Published online by Cambridge University Press: 03 March 2011
The liquidus projection of the ternary Sn–Ag–Ni system at the Sn-rich side was determined experimentally. No ternary compound was found, and the ζ–Ag4Sn, Ag3Sn, and Sn existed as the primary solidification phases only in very small compositional portions of the ternary Sn–Ag–Ni system. In more than half of the compositional regime of the ternary system, the Ni3Sn2 phase was the primary solidification phase. The differential thermal analysis technique was used to determine the reaction temperatures and solidification sequences of various Sn-rich Sn–Ag–Ni alloys. Three invariant reactions were found: L = Sn + Ni3Sn4 + Ag3Sn, L + ζ–Ag4Sn = Ni3Sn4 + Ag3Sn and L + Ni3Sn2 = ζ–Ag4Sn + Ni3Sn4. Their reaction temperatures have been determined to be 219, 488, and 516.5 °C, respectively.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.