Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-27T02:05:30.576Z Has data issue: false hasContentIssue false

Low temperature proton conduction in bulk nanometric TiO2 prepared by high-pressure field assisted sintering

Published online by Cambridge University Press:  24 May 2012

Filippo Maglia*
Affiliation:
Dipartimento di Chimica, Università degli Studi di Pavia, viale Taramelli 12, I-27100 Pavia, Italy
Ilenia G. Tredici
Affiliation:
Dipartimento di Chimica, Università degli Studi di Pavia, viale Taramelli 12, I-27100 Pavia, Italy
Giorgio Spinolo
Affiliation:
Dipartimento di Chimica, Università degli Studi di Pavia, viale Taramelli 12, I-27100 Pavia, Italy
Umberto Anselmi-Tamburini
Affiliation:
Dipartimento di Chimica, Università degli Studi di Pavia, viale Taramelli 12, I-27100 Pavia, Italy
*
a)Address all correspondence to this author. e-mail: filippo.maglia@unipv.it
Get access

Abstract

We investigated the conductivity of high-density bulk-anatase samples with a grain size between 24 and 56 nm prepared by high pressure field-assisted sintering. When exposed to humid atmosphere, the insurgence of proton conductivity was observed for temperatures below 350 °C. Below this temperature, the samples showed a conductivity several orders of magnitude higher than that measured under dry oxygen atmosphere. The protonic conductivity strongly increased as grain size decreased, while a negligible dependence from porosity was observed when the latter ranged between 8 and 25 vol%. If compared with zirconia- and ceria-based nanomaterials with similar grain size, bulk nanometric anatase showed the highest low temperature protonic conductivity as well as the highest crossover temperature between dry and humid conduction behavior.

Type
Articles
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Maier, J.: Nanoionics: Ion transport and electrochemical storage in confined systems. Nat. Mater. 4, 805 (2005).CrossRefGoogle ScholarPubMed
2.Maier, J.: Nano-ionics: Trivial and non-trivial size effects on ion conduction in solids. Z. Phys. Chem. 217, 415 (2003).CrossRefGoogle Scholar
3.Tuller, H.L.: Ionic conduction in nanocrystalline materials. Solid State Ionics 131, 143 (2000).CrossRefGoogle Scholar
4.Schoonman, J.: Nanostructured materials in solid state ionics. Solid State Ionics 135137, 5 (2005).CrossRefGoogle Scholar
5.Kim, S., Anselmi-Tamburini, U., Park, H.J., Martin, M., and Munir, Z.A.: Unprecedented room-temperature electrical power generation using nanoscale fluorite-structured oxide electrolytes. Adv. Mater. 20, 556 (2008).CrossRefGoogle Scholar
6.Chiodelli, G., Maglia, F., Anselmi-Tamburini, U., and Munir, Z.A.: Characterization of low temperature protonic conductivity in bulk nanocrystalline fully stabilized zirconia. Solid State Ionics 180, 297 (2009).CrossRefGoogle Scholar
7.Anselmi-Tamburini, U., Maglia, F., Chiodelli, G., Riello, P., Bucella, S., and Munir, Z.A.: Enhanced protonic conductivity in fully dense nanometric cubic zirconia. Appl. Phys. Lett. 89, 163116 (2006).CrossRefGoogle Scholar
8.Kim, S., Avila-Paredes, H.J., Wang, S.Z., Chen, C.T., De Souza, R.A., Martin, M., and Munir, Z.A.: On the conduction pathway for protons in nanocrystalline yttria-stabilized zirconia. Phys. Chem. Chem. Phys. 11, 3035 (2009).CrossRefGoogle ScholarPubMed
9.Ruiz-Trejo, E. and Kilner, J.A.: Possible proton conduction in Ce0.9Gd0.1O2-δ nanoceramics. J. Appl. Electrochem. 39, 523 (2009).CrossRefGoogle Scholar
10.Takamura, H. and Takahashi, N.: Electrical conductivity of dense nanocrystalline ceria under humidified atmosphere. Solid State Ionics 181, 100 (2010).CrossRefGoogle Scholar
11.Avila-Paredes, H.J., Chen, C., Wang, S., De Souza, R.A., Martin, M., Munir, Z.A., and Kim, S.: Grain boundaries in dense nanocrystalline ceria ceramics: Exclusive pathways for proton conduction at room temperature. J. Mater. Chem. 20, 10110 (2010).CrossRefGoogle Scholar
12.Shirpour, M., Gregori, G., Merkle, R., and Maier, J.: On the proton conductivity in pure and gadolinium doped nanocrystalline cerium oxide. Phys. Chem. Chem. Phys. 13, 937 (2011).CrossRefGoogle ScholarPubMed
13.Park, J.S., Kim, Y.B., Shim, J.H., Kang, S., Gur, T.M., and Prinz, F.B.: Evidence of proton transport in atomic layer deposited yttria-stabilized zirconia films. Chem. Mater. 22, 5366 (2010).CrossRefGoogle Scholar
14.Colomer, M.T.: Nanoporous anatase thin films as fast proton-conducting materials. Adv. Mater. 18, 371 (2006).CrossRefGoogle Scholar
15.Garcia-Belmonte, G., Kytin, V., Dittrich, T., and Bisquert, J.: Effect of humidity on the ac conductivity of nanoporous TiO2. J. Appl. Phys. 94, 5261 (2003).CrossRefGoogle Scholar
16.Ekström, H., Wickman, B., Gustavsson, M., Hanarp, P., Eurenius, L., Olsson, E., and Lindbergh, G.: Nanometer-thick films of titanium oxide acting as electrolyte in the polymer electrolyte fuel cell. Electrochim. Acta 52, 4239 (2007).CrossRefGoogle Scholar
17.Chan, W.K., Borghols, W.J.H., and Mulder, F.M.: Direct observation of space charge induced hydrogen ion insertion in nanoscale anatase TiO2. Chem. Commun. 47, 6342 (2008).CrossRefGoogle Scholar
18.Lee, Y.I., Lee, J-H., Hong, S-H., and Kim, D-Y.: Preparation of nanostructured TiO2 ceramics by spark plasma sintering. Mater. Res. Bull. 38, 925 (2003).CrossRefGoogle Scholar
19.Angerer, P., Yu, L.G., Khor, K.A., and Krumpel, G.: Spark-plasma-sintering (SPS) of nanostructured and submicron titanium oxide powders. Mater. Sci. Eng., A 381, 16 (2004).CrossRefGoogle Scholar
20.Masahashi, N.: Fabrication of bulk anatase TiO2 by the spark plasma sintering method. Mater. Sci. Eng., A 452/453, 721 (2007).CrossRefGoogle Scholar
21.Noh, J.H., Jung, H.S., Lee, J-K., Kim, J-R., and Hong, K.S.: Microwave dielectric properties of nanocrystalline TiO2 prepared using spark plasma sintering. J. Eur. Ceram. Soc. 27, 2937 (2007).CrossRefGoogle Scholar
22.Weibel, A., Bouchet, R., Denoyel, R., and Knauth, P.: Hot pressing of nanocrystalline TiO2 (anatase) ceramics with controlled microstructure. J. Eur. Ceram. Soc. 27, 2641 (2007).CrossRefGoogle Scholar
23.Mazaheri, M., Hesabi, Z.R., and Sadrnezhaad, S.K.: Two-step sintering of titania nanoceramics assisted by anatase-to-rutile phase transformation. Scr. Mater. 59, 139 (2008).CrossRefGoogle Scholar
24.Maglia, F., Dapiaggi, M., Tredici, I., and Anselmi-Tamburini, U.: Synthesis of fully dense TiO2 through high pressure field assisted rapid sintering. Nanosci. Nanotechnol. Lett. 4, 205 (2012).CrossRefGoogle Scholar
25.Anselmi-Tamburini, U., Garay, J.E., and Munir, Z.A.: Fast low-temperature consolidation of bulk nanometric ceramic materials. Scr. Mater. 54, 823 (2006).CrossRefGoogle Scholar
26.Knauth, P. and Tuller, H.L.: Electrical and defect thermodynamic properties of nanocrystalline titanium dioxide. J. Appl. Phys. 85, 897 (1999).CrossRefGoogle Scholar
27.Lunell, S., Stashans, A., Ojamae, L., Lindström, H., and Hagfeldt, A.: Li and Na diffusion in TiO2 from quantum chemical theory versus electrochemical experiment. J. Am. Chem. Soc. 119, 7374 (1997).CrossRefGoogle Scholar