Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-08T20:03:00.774Z Has data issue: false hasContentIssue false

Mechanism of high-pressure torsion-induced shear banding and lamellar thickness saturation in Co–Cr–Fe–Ni–Nb high-entropy composites

Published online by Cambridge University Press:  14 May 2019

Tapabrata Maity
Affiliation:
Erich Schmid Institute of Materials Science, Austrian Academy of Sciences, Leoben 8700, Austria; and Department Materials Physics, Montanuniversitat Leoben, Leoben 8700, Austria
Konda Gokuldoss Prashanth*
Affiliation:
Erich Schmid Institute of Materials Science, Austrian Academy of Sciences, Leoben 8700, Austria; and Department of Mechanical and Industrial Engineering, Tallinn University of Technology, Tallinn 19086, Estonia
Alexander Janda
Affiliation:
Department Materials Physics, Montanuniversitat Leoben, Leoben 8700, Austria
Jeong Tae Kim
Affiliation:
Erich Schmid Institute of Materials Science, Austrian Academy of Sciences, Leoben 8700, Austria
Florian Spieckermann
Affiliation:
Department Materials Physics, Montanuniversitat Leoben, Leoben 8700, Austria
Jürgen Eckert
Affiliation:
Erich Schmid Institute of Materials Science, Austrian Academy of Sciences, Leoben 8700, Austria; and Department Materials Physics, Montanuniversitat Leoben, Leoben 8700, Austria
*
a)Address all correspondence to this author. e-mail: kgprashanth@gmail.com
Get access

Abstract

High-entropy composites (HECs) were subjected to severe straining by high-pressure torsion (HPT) to evaluate their influence on the evolution of microstructure and deformation behavior. Severe straining leads to a homogeneously strained microstructure and inhomogeneous micro-shear bands in these HECs. Nb addition in HECs varies the microstructure from single phase to eutectic, and the Vickers microhardness in HPT HECs increases to 7.45 GPa. Nb addition up to x = 0.80 in as-cast HECs improves the strength of these materials at the expense of its plasticity. Nevertheless, severe straining provides a better combination of strength and ductility without sacrificing its plasticity. Such improvement in properties is attributed to the evolved microstructural features, formation of “transformation-shear bands (T-SBs)” and “deformation-shear bands (D-SBs)” at severe straining. This assures the homogeneous deformation by shear banding and suggests that shear banding is the dominant deformation mechanism when the lamellar spacing becomes saturated upon severe straining.

Type
Article
Copyright
Copyright © Materials Research Society 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

b)

This author was an editor of this journal during the review and decision stage. For the JMR policy on review and publication of manuscripts authored by editors, please refer to http://www.mrs.org/editor-manuscripts/.

References

He, G., Eckert, J., Löser, W., and Schultz, L.: Novel Ti based nanostructure–dendrite composites with enhanced plasticity. Nat. Mater. 2, 33 (2003).CrossRefGoogle Scholar
Eckert, J., Das, J., Pauly, S., and Duhamel, C.: Mechanical properties of bulk metallic glasses and composites. J. Mater. Res. 22, 285 (2007).CrossRefGoogle Scholar
Zhang, L.C., Das, J., Lu, H.B., Duhamel, C., Calin, M., and Eckert, J.: High strength Ti–Fe–Sn ultrafine composites with large plasticity. Scr. Mater. 57, 101 (2007).CrossRefGoogle Scholar
Maity, T., Roy, B., and Das, J.: Mechanism of lamellae deformation and phase rearrangement in ultrafine lamellar β-Ti/FeTi eutectic composites. Acta Mater. 97, 170 (2015).CrossRefGoogle Scholar
Zhang, L.C., Lu, H.B., Mickel, C., and Eckert, J.: Ductile ultrafine-grained Ti-based alloys with high yield strength. Appl. Phys. Lett. 91, 051906 (2007).CrossRefGoogle Scholar
Das, J., Kim, K.B., Baier, F., Löser, W., and Eckert, J.: High-strength Ti-base ultrafine eutectic with enhanced ductility. Appl. Phys. Lett. 87, 161907 (2005).CrossRefGoogle Scholar
Maity, T. and Das, J.: High strength Ni–Zr–(Al) nano/-eutectic composites with large plasticity. Intermetallics 63, 51 (2015).CrossRefGoogle Scholar
Maity, T., Singh, A., Dutta, A., and Das, J.: Microstructure mechanism on the evolution of plasticity in nanolamellar γ-Ni/Ni5Zr eutectic composites. Mater. Sci. Eng., A 666, 72 (2016).CrossRefGoogle Scholar
Lee, S.W., Kim, J.T., Hong, S.H., Park, H.J., Park, J.Y., Lee, N.S., Seo, Y., Suh, J.Y., Eckert, J., Kim, D.H., Park, J.M., and Kim, K.B.: Micro-to-nano-scale deformation mechanisms of a bimodal ultrafine eutectic composites. Sci. Rep. 4, 6500 (2014).CrossRefGoogle Scholar
Maity, T., Dutta, A., Jana, P.P., Prashanth, K.G., Eckert, J., and Das, J.: Influence of Nb on the microstructure and fracture toughness of (Zr0.76Fe0.24)100−xNbx nanoeutectic composites. Materials 11, 113 (2018).CrossRefGoogle Scholar
Kim, J.T., Hong, S.H., Park, H.J., Park, G.H., Suh, J.Y., Park, J.M., and Kim, K.B.: Influence of microstructural evolution on mechanical behavior of Fe–Nb–B ultrafine composites with a correlation to elastic modulus and hardness. J. Alloys Compd. 647, 886 (2015).CrossRefGoogle Scholar
Kim, J.T., Hong, S.H., Park, H.J., Kim, Y.S., Suh, J.Y., Lee, J.K., Park, J.M., Maity, T., Eckert, J., and Kim, K.B.: Deformation mechanisms to ameliorate the mechanical properties of novel TRIP/TWIP Co–Cr–Mo–(Cu) ultrafine eutectic alloys. Sci. Rep. 7, 39959 (2017).CrossRefGoogle ScholarPubMed
Kim, J.T., Hong, S.H., Park, H.J., Kim, Y.S., Park, G.H., Park, J., Lee, N., Seo, Y., Park, J.M., and Kim, K.B.: Improving the plasticity and strength of Fe–Nb–B ultrafine eutectic composite. Mater. Des. 76, 190 (2015).CrossRefGoogle Scholar
Yang, C., Kang, L.M., Li, X.X., Zhang, W.W., Zhang, D.T., Fu, Z.Q., Li, Y.Y., Zhang, L.C., and Lavernia, E.J.: Bimodal titanium alloys with ultrafine lamellar eutectic structure fabricated by semi-solid sintering. Acta Mater. 132, 491 (2017).CrossRefGoogle Scholar
Liu, L.H., Yang, C., Wang, F., Qu, S.G., Li, X.Q., Zhang, W.W., Li, Y.Y., and Zhang, L.C.: Ultrafine grained Ti-based composites with ultrahigh strength and ductility achieved by equiaxing microstructure. Mater. Des. 79, 1 (2015).CrossRefGoogle Scholar
Lu, Y., Dong, Y., Guo, S., Kang, H., Wang, T., Wen, B., Wang, Z., Jie, J., Cao, Z., Ruan, H., and Li, T.: A promising new class of high-temperature alloys: Eutectic high-entropy alloys. Sci. Rep. 4, 6200 (2014).CrossRefGoogle ScholarPubMed
Gao, M.C., Yeh, J.W., Liaw, P.K., and Zhang, Y.: High-Entropy Alloys: Fundamentals and Applications, 1st ed. (Springer International Publishing, Cham, Switzerland, 2016).CrossRefGoogle Scholar
He, F., Wang, Z., Cheng, P., Li, J., Dang, Y., Wang, J., and Liu, C.T.: Designing eutectic high entropy alloys of CoCrFeNiNbx. J. Alloys Compd. 656, 284 (2016).CrossRefGoogle Scholar
Dong, Y., Jiang, L., Jiang, H., Lu, Y., Wang, T., and Li, T.: Effect of annealing treatment on microstructure and hardness of bulk AlCrFeNiMo0.2 eutectic high entropy alloy. Mater. Des. 82, 91 (2015).CrossRefGoogle Scholar
Tsai, M.H., Fan, A.C., and Wang, H.A.: Effect of atomic size difference on the type of major intermetallic phase in arc-melted CoCrFeNix high-entropy alloys. J. Alloys Compd. 695, 1479 (2017).CrossRefGoogle Scholar
He, F., Wang, Z., Zhu, M., Li, J., Dang, Y., and Wang, J.: The phase stability of Ni2CrFeMox multi-principal-component alloys with medium configurational entropy. Mater. Des. 85, 1 (2015).CrossRefGoogle Scholar
He, F., Wang, Z., Shang, X., Leng, C., Li, J., and Wang, J.: Stability of lamellar structures in Co–Cr–Fe–Ni–Nbx eutectic high entropy alloys at elevated temperatures. Mater. Des. 104, 259 (2016).CrossRefGoogle Scholar
Maity, T., Prashanth, K.G., Balci, O., Wang, Z., Jia, Y.D., and Eckert, J.: Plastic defamation mechanisms in severely strained eutectic high entropy composites explained via strain rate sensitivity and activation volume. Composites, Part B 150, 7 (2018).CrossRefGoogle Scholar
Maity, T., Prashanth, K.G., Balci, O., Kim, J.T., Schöberl, T., Wang, Z., and Eckert, J.: Influence of severe straining and strain rate on the evolution of dislocation structure during micro-/nanoindentation in high entropy lamellar eutectics. Int. J. Plast. 109, 121 (2018).CrossRefGoogle Scholar
Reddy, T.S., Wani, I.S., Bhattacharjee, T., Reddy, S.R., Saha, R., and Bhattacharjee, P.P.: Severe plastic deformation driven nanostructure and phase evolution in a Al0.5CoCrFeNi dual phase high entropy alloy. Intermetallics 91, 150 (2017).CrossRefGoogle Scholar
Lu, Y., Gao, X., Jiang, L., Chen, Z., Wang, T., Jie, J., Kang, H., Zhang, Y., Guo, S., Ruan, H., Zhao, Y., Cao, Z., and Li, T.: Directly cast bulk eutectic and near eutectic high entropy alloys with balanced strength and ductility in a wide temperature range. Acta Mater. 124, 143 (2017).CrossRefGoogle Scholar
Wani, I.S., Bhattacharjee, T., Sheikh, S., Lu, P., Chatterjee, S., Bhattacharjee, P.P., Guo, S., and Tsuji, N.: Ultrafine-grained AlCoCrFeNi2.1 eutectic high-entropy alloy. Mater. Res. Lett. 4, 174 (2016).CrossRefGoogle Scholar
Rogal, L., Morgiel, J., Swiatek, Z., and Czerwinski, F.: Microstructure and mechanical properties of the new Nb25Sc25Ti25Zr25 eutectic high entropy alloy. Mater. Sci. Eng., A 651, 590597 (2016).CrossRefGoogle Scholar
Jiang, H., Zhang, H., Huang, T., Lu, Y., Wang, T., and Li, T.: Microstructures and mechanical properties of Co2MoxNi2VWx eutectic high entropy alloys. Mater. Des. 109, 539 (2016).CrossRefGoogle Scholar
Jiang, L., Lu, Y., Wu, W., Cao, Z., and Li, T.: Microstructure and mechanical properties of a CoFeNi2V0.5Nb0.75 eutectic high entropy alloy in as-cast and heat-treated conditions. J. Mater. Sci. Technol. 32, 245 (2016).CrossRefGoogle Scholar
Tan, Y., Li, J., Wang, J., and Kou, H.: Seaweed eutectic-dendritic solidification pattern in a CoCrFeNiMnPd eutectic high-entropy alloy. Intermetallics 85, 74 (2017).CrossRefGoogle Scholar
Ding, Z.Y., He, Q.F., Wang, Q., and Yang, Y.: Superb strength and high plasticity in laves phase rich eutectic medium-entropy-alloy nanocomposites. Int. J. Plast. 106, 57 (2018).CrossRefGoogle Scholar
Sasmal, S., Rahul, M.R., Kottada, R.S., and Phanikumar, G.: Hot deformation behavior and processing map of Co–Cu–Fe–Ni–Ti eutectic high entropy alloy. Mater. Sci. Eng., A 664, 227 (2016).CrossRefGoogle Scholar
Pollock, T.M. and Tin, S.: Nickel based super-alloys for advanced turbine engines: Chemistry, microstructure, and properties. J. Propul. Power 22, 361 (2006).CrossRefGoogle Scholar
Dey, S.R., Hollang, L., Beausir, B., Hieckmann, E., and Skrotzki, W.: Formation of micro shear bands during cyclic deformation of sub-microcrystalline nickel. Scr. Mater. 68, 631 (2013).CrossRefGoogle Scholar
Böhme, M. and Wagner, M.F.X.: On the correlation of shear band formation and texture evolution in α-brass during accumulative roll bonding. Scr. Mater. 154, 172 (2018).CrossRefGoogle Scholar
Ligda, J.P., Schuster, B.E., and Wei, Q.: Transition in the deformation mode of nanocrystalline tantalum processed by high pressure torsion. Scr. Mater. 67, 253 (2012).CrossRefGoogle Scholar
Wie, Q., Jia, D., Ramesh, K.T., and Ma, E.: Evolution and microstructure of shear bands in nanostructured Fe. Appl. Phys. Lett. 81, 1240 (2002).Google Scholar
Hebesberger, T., Stüwe, H.P., Vorhauer, A., Wetscher, F., and Pippan, R.: Structure of copper deformed by high pressure torsion. Acta Mater. 53, 393 (2005).CrossRefGoogle Scholar
Hafok, M. and Pippan, R.: Post-shear deformation of high pressure torsion-deformed nickel under hydrostatic pressure. Scr. Mater. 56, 757 (2007).CrossRefGoogle Scholar
Wetscher, F., Vorhauer, A., and Pippan, R.: Strain hardening during high pressure torsion deformation. Mater. Sci. Eng., A 410–411, 213 (2005).CrossRefGoogle Scholar
Zelin, M.G., Krasilnikov, N.A., Valiev, R.Z., Grabski, M.W., Yang, H.S., and Mukherjee, A.K.: On the microstructural aspects of the nonhomogeneity of superplastic deformation at the level of grain groups. Acta Metall. 42, 119 (1994).CrossRefGoogle Scholar
Wu, S.D., Wang, Z.G., Jiang, C.B., and Li, G.Y.: Scanning electron microscopy-electron channeling contrast investigation of recrystallization during cyclic deformation of ultrafine grained copper processed by equal channel angular pressing. Philos. Mag. Lett. 82, 559 (2002).CrossRefGoogle Scholar
Vorhauer, A. and Pippan, R.: On the homogeneity of deformation by high pressure torsion. Scr. Mater. 51, 921 (2004).CrossRefGoogle Scholar
Kormut, K.S., Ghosh, P., Bachmaier, A., Hohenwarter, A., and Pippan, R.: Effect of processing temperature on the microstructural characteristics of Cu–Ag nanocomposites: From super saturation to complete phase decomposition. Acta Mater. 154, 33 (2018).CrossRefGoogle Scholar
Kim, J.T., Hong, S.H., Park, J.M., Eckert, J., and Kim, K.B.: Microstructure and mechanical properties of hierarchical multi-phase composites based on Al–Ni-type intermetallic compounds in the Al–Ni–Cu–Si alloys system. J. Alloys Compd. 749, 205 (2018).CrossRefGoogle Scholar
Tian, Y.Z., Wu, S.D., Zhang, Z.F., Figueiredo, R.B., Gao, N., and Langdon, T.G.: Microstructural evolution and mechanical properties of a two phase Cu–Ag alloy processed by high-pressure torsion to ultrahigh strains. Acta Mater. 59, 2783 (2011).CrossRefGoogle Scholar
Chicot, D.: Hardness length-scale factor to model nano- and micro-indentation size effects. Mater. Sci. Eng., A 499, 454 (2009).CrossRefGoogle Scholar
Tanaka, M., Saito, H., Yasumaru, M., and Hagishida, K.: Nature of delamination cracks in perlitic steels. Scr. Mater. 112, 32 (2016).CrossRefGoogle Scholar
Xu, Y.B., Zhong, W.L., Chen, Y.J., Shen, L.T., Liu, Q., Bai, Y.L., and Meyers, M.A.: Shear localization and recrystallization in dynamic deformation of 8090 Al–Li alloy. Mater. Sci. Eng., A 299, 287 (2001).CrossRefGoogle Scholar
Fan, G.J., Wang, G.Y., Choo, H., Liaw, P.K., Park, Y.S., Han, B.Q., and Lavernia, E.J.: Deformation behaviour of an ultrafine-grained Al–Mg alloy at different strain rates. Scr. Mater. 52, 929 (2005).CrossRefGoogle Scholar
Wright, T.W. and Ockendon, H.: A scaling law for the effect of inertia on the formation of adiabatic shear bands. Int. J. Plast. 12, 927 (1996).CrossRefGoogle Scholar
Mayer, A.M., Nesterenko, V.F., Lasalvia, J.C., and Xue, Q.: Shear localization in dynamic deformation of materials: Microstructural evolution and self-organization. Mater. Sci. Eng., A 317, 204 (2001).Google Scholar
Kapp, M., Renk, O., Leitner, T., Ghosh, P., Yang, B., and Pippan, R.: Cyclic induced grain growth within shear bands investigated in UFG Ni by cyclic high pressure torsion. J. Mater. Res. 32, 4317 (2017).CrossRefGoogle Scholar
Pippan, R., Scheriau, S., Taylor, A., Hafok, M., Hohenwarter, A., and Bachmaier, A.: Saturation of fragmentation during severe plastic deformation. Annu. Rev. Mater. Res. 40, 319 (2010).CrossRefGoogle Scholar
Li, F.X., Hao, P.D., Yi, J.H., Chen, Z., Prashanth, K.G., Maity, T., and Eckert, J.: Microstructure and strength of nano-/ultrafine-grain carbon nanotube-reinforced titanium composites processed by high pressure torsion. Mater. Sci. Eng., A 722, 122 (2018).CrossRefGoogle Scholar