Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2024-12-28T16:23:50.105Z Has data issue: false hasContentIssue false

Metal-nonmetal transition and resistivity of silicon implanted with bismuth

Published online by Cambridge University Press:  31 January 2011

E. Abramof
Affiliation:
Instituto Nacional de Pesquisas Espaciais (INPE), Laboratório Associado de Sensores e Materiais-LAS, CP 515, 12201-970 São José dos Campos-SP, Brazil
A. Ferreira da Silva
Affiliation:
Instituto Nacional de Pesquisas Espaciais (INPE), Laboratório Associado de Sensores e Materiais-LAS, CP 515, 12201-970 São José dos Campos-SP, Brazil
Bo E. Sernelius
Affiliation:
Department of Physics, Linköping University, S-581 83 Linköping, Sweden
J. P. de Souza
Affiliation:
Instituto de Física–UFRGS, 91501–970 Porto Alegre-RS, Brazil
H. Boudinov
Affiliation:
Instituto de Física–UFRGS, 91501–970 Porto Alegre-RS, Brazil
Get access

Abstract

Bismuth was implanted at room temperature in (100)-Si wafers with controlled energy and doses to result in a plateau-like implantation profile. The van der Pauw Si : Bi samples were characterized by the Hall effect and resistivity measurements from room temperature down to 13 K. The electron concentration of the prepared samples at 290 K varied from 3.0 × 1017 to 1.4 × 1020 cm−3. The resistivity of the Si : Bi samples presents a larger enhancement, compared to other dopants, when decreasing the Bi concentration. The metal-nonmetal transition was determined to be around 2 × 1019 cm−3. The calculated values obtained from the Generalized Drude Approach and an equation derived from Kubo formalism agree very well with the experimental data. The results confirm also the behavior ρc (Bi) < ρc(As) < ρc(P) < ρc(Sb) at 290 K.

Type
Articles
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.de Souza, J. P. and Sadana, D. K., in Handbook on Semiconductors, edited by Mahajan, S. (North-Holland, Amsterdam, 1994), Vol. 3b, p. 2036.Google Scholar
2.Silva, A. Ferreira da, Sernelius, Bo E., de Souza, J. P., and Boudinov, H., J. Appl. Phys. 79, 3453 (1996).CrossRefGoogle Scholar
3.Silva, A. Ferreira da, J. Appl. Phys. 76, 5249 (1994).CrossRefGoogle Scholar
4.Dai, P., Zhang, Y., and Sarachik, M., Phys. Rev. B 49, 14 093 (1994).CrossRefGoogle Scholar
5.Lakner, M., Löhneysen, H. V., Langenfeld, A., and Wölfle, P., Phys. Rev B 50, 17 064 (1994).CrossRefGoogle Scholar
6.Trumbore, F. A., Bell Sys. Tech. J. 39, 205 (1960).CrossRefGoogle Scholar
7.de Souza, J. P. and Fichtner, P. F. P., J. Appl. Phys. 74, 119 (1993).CrossRefGoogle Scholar
8.Ziegler, J. F., Biersak, J. P., and Littmark, U., The Stopping and Ranges of Ion in Solids (Pergamon Press, New York, 1985), Vol. 1.Google Scholar
9.Fritszche, H., in The Metal-nonmetal Transition in Doped Semiconductors, edited by Friedman, L. R. and Tunstall, D. P. (Scottish Universities Summer School in Physics, Edinburgh, 1979), p. 193.Google Scholar
10.Woodbury, D. A. and Blakemore, J. S., Phys. Rev. B 8, 3803 (1973).Google Scholar
11.Silva, A. Ferreira da, Phys. Scripta T14, 27 (1986).CrossRefGoogle Scholar
12.Silva, A. Ferreira da, Phys. Rev. Lett. 59, 1263 (1987).CrossRefGoogle Scholar
13.Silva, A. Ferreira da, Phys. Rev. B 43, 6551 (1991).CrossRefGoogle Scholar
14.Sernelius, B. E., Phys. Rev. B 40, 12438 (1989).Google Scholar
15.Sernelius, B. E. and Söderström, E., J. Phys. C: Condens. Matter 3, 8425 (1991).Google Scholar
16.Newman, P. F. and Holcomb, D. F., Phys. Rev. B 28, 638 (1983).CrossRefGoogle Scholar
17.Rosenbaum, T. F., Andres, K., Thomas, G. A., and Bhatt, R. N., Phys. Rev. Lett. 45, 1723 (1980).CrossRefGoogle Scholar