Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-23T16:31:36.193Z Has data issue: false hasContentIssue false

Microanalysis of crystalline phases in Tl-1223 superconducting wire using an x-ray microdiffractometer

Published online by Cambridge University Press:  03 March 2011

Tatsumi Hirano
Affiliation:
Hitachi Research Laboratory, Hitachi Ltd., Omika-cho 7-1-1, Hitachi-shi, Ibaraki 319-12, Japan
Katsuhisa Usami
Affiliation:
Hitachi Research Laboratory, Hitachi Ltd., Omika-cho 7-1-1, Hitachi-shi, Ibaraki 319-12, Japan
Get access

Abstract

We developed an x-ray microdiffractometer using synchrotron radiation with which we analyzed microcrystal structures of heterogeneities in Tl-1223 superconducting wires prepared by different processes, i.e., partial melt and solid/liquid phase reaction. Samples with the nominal composition (Tl0.5Pb0.5)1(Sr0.8Ba0.2)2Ca2Cu3O9 were irradiated by focused SR x-rays of 6 μm × 8 μm size. The diffracted x-rays were two-dimensionally detected with an imaging plate. From crystal structure analysis, we identified the heterogeneities as BaPbO3 and (CaSr)2Cu1O3 which are present in Tl-1223 superconducting wires prepared by both processes. This suggested that these heterogeneous phases coexist with the stable phase in the Tl-1223 phase diagram. Consequently, it is necessary to develop a new processing method such as low temperature annealing or a suitable O2 pressure control method.

Type
Articles
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Murakami, M., Morita, M., Doi, K., Miyamoto, K., and Hamada, H., Jpn. J. Appl. Phys. 28, L399 (1989).CrossRefGoogle Scholar
2Murakami, M., Morita, M., Doi, K., and Miyamoto, K., Jpn. J. Appl. Phys. 29, 1189 (1989).CrossRefGoogle Scholar
3Doi, T., Okada, M., Soeta, A., Yuasa, T., Aihara, K., Kamo, T., and Matsuda, S., Physica C 183, 67 (1991).CrossRefGoogle Scholar
4Matsumoto, T., Aihara, K., and Soeta, M., Hitachi Rev. 39, 55 (1990).Google Scholar
5Kumakura, H., Togano, K., Yanagisawa, E., Kase, J., and Maeda, H., Jpn. J. Appl. Phys. 29, L1652 (1990).CrossRefGoogle Scholar
6Adachi, S., Adachi, H., Ichikawa, Y., Setsume, K., and Wasa, K., Jpn. J. Appl. Phys. 30, LI 110 (1990).Google Scholar
7Itoh, T. and Uchikawa, H., J. Cryst. Growth 91, 414 (1988).CrossRefGoogle Scholar
8Kirkpatrick, P. and Baez, A. V., J. Opt. Soc. Am. 38, 766 (1948).CrossRefGoogle Scholar
9Hirano, T., Higashi, F., and Usami, K., Rev. Sci. Instrum. 63, 5602 (1992).CrossRefGoogle Scholar
10Hirai, Y., Waki, I., Hayakawa, K., Kuroishi, K., Yasaka, Y., Kanaya, N., Satow, Y., and Sato, S., Nucl. Instrum. Methods A327, 256 (1993).CrossRefGoogle Scholar
11Okada, M., Okayama, A., Morimoto, T., Matsumoto, T., Aihara, K., and Matsuda, S., Jpn. J. Appl. Phys. 27, L185 (1988).CrossRefGoogle Scholar
12Izumi, F., Nippon Kessho Gakkaishi (J. Crystallogr. Soc. Jpn.) 27, 23 (1985) (in Japanese).CrossRefGoogle Scholar