Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2025-01-05T04:51:02.449Z Has data issue: false hasContentIssue false

Microstructural characterization of rapidly solidified Al–Fe–Si, Al–V–Si, and Al–Fe–V–Si alloys

Published online by Cambridge University Press:  31 January 2011

A. K. Srivastava
Affiliation:
Centre for Advanced Study, Department of Metallurgy, Indian Institute of Science, Bangalore 560 012, India
S. Ranganathan
Affiliation:
Centre for Advanced Study, Department of Metallurgy, Indian Institute of Science, Bangalore 560 012, India
Get access

Abstract

The present study of rapidly solidified melt-spun Al80Fe14Si6 Al80V14Si6, and Al80Fe10V4Si6 alloys by electron microscopy techniques, x-ray diffractometry, and differential scanning calorimetry leads to a number of microstructural results. Coexistence of a micro-quasicrystalline state of an icosahedral phase with monoclinic θ–Al13Fe4 and hexagonal β–Al6V in Al–Fe–Si and Al–V–Si alloys, respectively, is reported. Also, the growth morphology of the icosahedral phase surrounded by a crystalline ring was investigated in an Al–Fe–V–Si alloy. The crystalline ring has the particles of the cubic α–Al12(Fe,V)3Si silicide phase. Evidence of irrational twinning of cubic crystals, giving rise to a symmetry not deviating much from icosahedral symmetry was found in this alloy. In all the three alloys crystalline intermetallics were elucidated in the context of rational approximants of an icosahedral quasicrystal. It was noticed that while the icosahedral phase in Al–Fe–Si and Al–V–Si alloys transforms to crystalline intermetallics at about the same temperature (approximately 610 K), the transformation of icosahedral phase in Al–Fe–V–Si alloy occurred at a relatively lower temperature (540 K). The origin of different metastable microstructures and their stability at elevated temperatures, in these alloys, are compared and discussed.

Type
Articles
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Das, S.K., in Intermetallic Compounds, edited by Westbrock, J.H. and Fleischer, R.L. (John Wiley & Sons Ltd. 2, Chichester, 1995),p. 175).Google Scholar
2.Davis, L.A., Das, S.K., Li, J.C.M., and Zedalis, M.S., Int. J. Rapid Sol. 8, 73 (1994).Google Scholar
3.Shechtman, D., Blech, J., Gratias, D., and Cahn, J.W., Phys. Rev. Lett. 53, 1951 (1984).CrossRefGoogle Scholar
4.Ranganathan, S. and Chattopadhyay, K., Ann. Rev. Mater. Sci. 21, 437 (1991).CrossRefGoogle Scholar
5.Kelton, K.F., Int. Mater. Rev. 38, 105 (1993).CrossRefGoogle Scholar
6.Goldman, A.I. and Kelton, K.F., Rev. Mod. Phys. 65, 213 (1993).CrossRefGoogle Scholar
7.Kelton, K.F., in Intermetallic Compounds, edited by Westbrock, J.H. and Fleischer, R.L. (John Wiley & Sons Ltd. 1, Chichester, 1994), p. 453.Google Scholar
8.Thangaraj, N., Chattopadhyay, K., Gopal, E.S.R., and Ranganathan, S., Key Eng. Mater. 13–15, 245 (1987).CrossRefGoogle Scholar
9.Schaefer, R.J., Bendersky, L.A., Shechtman, D., Boetinger, W.J., and Biancaniello, F.S., Metall. Trans. 17A, 2117 (1986).CrossRefGoogle Scholar
10.Swamy, V.T., Ranganathan, S. and Chattopadhyay, K., J. Mater. Res. 4, 539 (1989).CrossRefGoogle Scholar
11.Köster, U. and Schuhmacher, B., Mater. Sci. Eng. 99, 417 (1988).CrossRefGoogle Scholar
12.Tsai, A.P., Inoue, A., Bizen, Y., and Masumoto, T., Acta. Metall. 37, 1443 (1989).CrossRefGoogle Scholar
13.Srivastava, A.K., J. Mater. Sci. Lett. 19, 1217 (2000).CrossRefGoogle Scholar
14.Bendersky, L.A., Cahn, J.W., and Gratias, D., Philos. Mag. 60B, 837 (1989).CrossRefGoogle Scholar
15.Koskenmaki, D.C., Chen, H.S., and Rao, K.V., Phys. Rev. 33B, 5328 (1986).CrossRefGoogle Scholar
16.Srivastavaand, A.K., Ranganathan, S., Acta Mater. 44, 2935 (1996).CrossRefGoogle Scholar
17.Lalla, N.P., Tiwari, R.S., and Srivastava, O.N., J. Mater. Res. 7, 53 (1992).CrossRefGoogle Scholar
18.Mandal, R.K., Sastry, G.V.S., Lele, S., and Ranganathan, S., Scripta Metall. Mater. 25, 1477 (1991).CrossRefGoogle Scholar
19.Srivastava, A.K. and Ranganathan, S., Scripta Metall. Mater. 27, 1241 (1992).CrossRefGoogle Scholar
20.Singh, A., Srivastava, A.K., and Ranganathan, S., in Microstructure of Materials, edited by Krishnan, K.M. (San Francisco Press, San Francisco, CA, 1993), p. 152.Google Scholar
21.Mandal, R.K., Lele, S., and Ranganathan, S., Philos. Mag. Lett. 67, 301 (1993).CrossRefGoogle Scholar
22.Ranganathan, S., Singh, Alok, Mandal, R.K. and Lele, S., in Crystal-Quasicrystal Transitions, edited by Yacaman, M.J. and Torres, M. (Elsevier Science Publishers, Amsterdam, The Netherlands, 1993), p. 83.Google Scholar
23.Ranganathan, S., Srivastava, A.K. and Mackay, A.L., (unpublished).Google Scholar
24.Dunlap, R.A. and Dini, K., Can. J. Phys. 63, 1266 (1985).CrossRefGoogle Scholar
25.Schurer, P.J., Koopmans, B., van der Woude, F., and Bronsveld, P., Solid State Comm. 59, 619 (1986).CrossRefGoogle Scholar
26.Kim, D.H. and Cantor, B., Philos. Mag. 69, 45 (1994).CrossRefGoogle Scholar
27.Fung, K.F., Zou, X.D., and Tang, C.Y., Philos. Mag. Lett. 55, 27 (1987).CrossRefGoogle Scholar
28.Chandrasekaran, M., Lin, Y.P., Vincent, R., and Staniek, G., Scripta Metall. 22, 797 (1988).CrossRefGoogle Scholar
29.Black, P.J., Acta Crystallogr. 8, 43 (1955).CrossRefGoogle Scholar
30.Black, P.J., Acta Crystallogr. 8, 175 (1955).CrossRefGoogle Scholar
31.Ellner, H., Acta Crystallogr. 51B, 31 (1995).CrossRefGoogle Scholar
32.Cheng, Y.F., Hui, M.J., Chen, X.S., and Li, F.H., Philos. Mag. Lett. 61, 173 (1990).CrossRefGoogle Scholar
33.Rivlin, V.G. and Raynor, G.V., Int. Metals Rev. 3, 133 (1981).Google Scholar
34.Armand, M., CR Hebd. Seances Acad. Sci. 235, 1506 (1952).Google Scholar
35.Munson, D., J. Inst. Metals 95, 217 (1967).Google Scholar
36.Legresy, J.M., Audier, M., Simon, J.P., and Guyot, P., Acta Metall. 34, 1759 (1986).CrossRefGoogle Scholar
37.Skjerpe, P., Metall. Trans. 18A, 189 (1987).CrossRefGoogle Scholar
38.Phragmen, G., J. Inst. Metals 77, 498 (1950).Google Scholar
39.Cooper, M., Acta Crystallogr. 23, 1106 (1967).CrossRefGoogle Scholar
40.Robinson, K. and Black, P.J., Philos. Mag. 44, 1392 (1953).CrossRefGoogle Scholar
41.Black, P.J., Philos. Mag. 46, 401 (1955).CrossRefGoogle Scholar
42. Proc. International Workshop on Effect of Iron and Silicon in Aluminium and its Alloys, Balatonfured, Hungary, 1989, edited by Kova’cs, I..Google Scholar
43.Suzuki, R.O., Komatsu, Y., Kobayashi, K.F., and Shingu, P.H., J. Mater. Sci. 18, 1195 (1983).CrossRefGoogle Scholar
44.Bendersky, L.A., Kaufman, M.J., Boetinger, W.J., and Biancaniello, F.S., Mater. Sci. Eng. 98, 213 (1988).CrossRefGoogle Scholar
45.Bendersky, L.A., McAllister, A.J., and Biancaniello, F.S., Metall. Trans. 19A, 2893 (1988).CrossRefGoogle Scholar
46.Guyot, P. and Audier, M., Philos. Mag. 52B, L15 (1985).CrossRefGoogle Scholar
47.Elser, V. and Henley, C., Phys. Rev. Lett. 55, 2883 (1985).CrossRefGoogle Scholar
48.Rao, K.V., Fidler, J., and Chen, H.S., Europhys. Lett. 1, 647 (1986).CrossRefGoogle Scholar
49.Dunlap, R.A. and Dini, K., J. Phys. 16, 11 (1986).CrossRefGoogle Scholar
50.Inoue, A., Arnberg, L., Lehtiner, B., Oguchi, M., and Masumoto, T., Metall. Trans. 17A, 1657 (1986).CrossRefGoogle Scholar
51.Kim, Y.W. and Froes, F.H., Mater. Sci. Eng. 98, 207 (1988).CrossRefGoogle Scholar
52.Smith, J.F. and Ray, A.E., Acta Crystallogr. 10, 169 (1957).CrossRefGoogle Scholar
53.Yamane, H., Kimura, K., Shibuya, T., and Takeuchi, S., Mater. Sci. Forum 22–24, 539 (1987).CrossRefGoogle Scholar
54.Kimura, N., Yamane, H., Masumoto, T., and Takeuchi, S., Mater. Sci. Eng. 99, 435 (1988).CrossRefGoogle Scholar
55.Skinner, D.J., in Dispersion Strengthened Aluminium Alloys, edited by Kim, Y.M. and Griffith, W.M. (The Minerals, Metals & Materials Society, Warrendale, PA, 1988), p. 181.Google Scholar
56.Skinner, D.J., Ramanan, V.R.V., Zedalis, M.S., and Kim, N.J., Mater. Sci. Eng. 99, 407 (1988).CrossRefGoogle Scholar
57.Ramanan, V.R.V., Skinner, D.J., and Zedalis, M.S., Mater. Sci. Eng. 134A, 912 (1991).CrossRefGoogle Scholar
58.Zhang, X.D., Bi, Y.J., and Loretto, M.H., Acta Metall. Mater. 41, 849 (1993).CrossRefGoogle Scholar
59.Cooper, M. and Robinson, K., Acta Cryst. 20, 614 (1966).CrossRefGoogle Scholar
60.Rodriguez, M. and Skinner, D.J., J. Mater. Sci. 9, 1292 (1990).Google Scholar
61.Kim, N.J., Int. J. Rap. Sol. 6, 175 (1991).Google Scholar
62.Skinner, D.J., Bye, R.L., Raybold, D., and Brown, A.M., Scripta Metall. 20, 867 (1986).CrossRefGoogle Scholar
63.Lee, J.C., Lee, S., Lee, D.Y., and Kim, N.J., Metall. Trans. 22A, 853 (1991).CrossRefGoogle Scholar
64.Rylands, L.M., Wilkes, D.M.J., Rainforth, W.M., and Jones, H., J. Mater. Sci. 29, 1895 (1994).CrossRefGoogle Scholar
65.Wang, J.Q., Tseng, M.K., Cheng, X.F., Zhang, B.J., and Xianyu, Z., Mater. Sci. Eng. 179A/180A, 412 (1994).CrossRefGoogle Scholar
66.Park, W.J., Ahn, S., and Kim, N.J., Mater. Sci. Eng. 189A, 291 (1994).CrossRefGoogle Scholar
67.Park, W.J., Ahn, S., and Kim, N.J., in Alloy Phase Stability, and Design, edited by Stocks, G.M., Pope, D.P., Giamei, A.F. (Mater. Res. Soc. Symp. Proc. 186, Pittsburgh, PA, (1991) p. 427.Google Scholar
68.Wang, J.Q., Qian, C.F., Tseng, M.G., and Lu, M.Q., Scripta Metall. Mater. 32, 663 (1995).CrossRefGoogle Scholar