Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-27T02:35:36.777Z Has data issue: false hasContentIssue false

Microstructure and properties of PbZr0.6Ti0.4O3 and PbZrO3 thin films deposited on template layers

Published online by Cambridge University Press:  31 January 2011

R. E. Koritala
Affiliation:
Energy Technology Division, Argonne National Laboratory, Argonne, Illinois 60439–4838
M. T. Lanagan
Affiliation:
Energy Technology Division, Argonne National Laboratory, Argonne, Illinois 60439–4838
N. Chen
Affiliation:
Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439–4838
G. R. Bai
Affiliation:
Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439–4838
Y. Huang
Affiliation:
Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439–4838
S. K. Streiffer
Affiliation:
Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439–4838
Get access

Abstract

Polycrystalline Pb(ZrxTi1−x)O3 thin films with x = 0.6 and 1.0 were deposited at low temperatures (450–525 °C) on (111)Pt/Ti/SiO2/Si substrates by metalorganic chemical vapor deposition. The films were characterized by x-ray diffraction, electron microscopy, and electrical measurements. The texture of the films could be improved by using one of two template layers: PbTiO3 or TiO2. Electrical properties, including dielectric constants, loss tangents, polarization, coercive field, and breakdown field, were also examined. PbZrO3 films on Pt/Ti/SiO2/Si with a pseudocubic (110) orientation exhibited an electric-field-induced transformation from the antiferroelectric phase to the ferroelectric phase. The effect of varying processing conditions on the microstructure and electrical properties of the films is discussed.

Type
Articles
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Jaffe, B., Cook, W., and Jaffe, H., Piezoelectric Ceramics (Academic Press, London, United Kingdom, 1971), p. 136.Google Scholar
2.Crawford, J.C. and English, F.L., IEEE Trans. Electron Devices ED–16, 525 (1969).CrossRefGoogle Scholar
3.Suzuki, K. and Nishikawa, M., Jpn. J. Appl. Phys. 13, 240 (1974).CrossRefGoogle Scholar
4.Land, C.E., Thacher, P.D., and Haertling, G.H., Appl. Solid State Sci. 4, 137 (1974).CrossRefGoogle Scholar
5.Shirane, G., Sawaguchi, E., and Takagi, Y., Phys. Rev. 84, 476 (1951).CrossRefGoogle Scholar
6.Sawaguchi, E., Maniwa, H., and Hoshino, S., Phys. Rev. 83, 1078 (1951).CrossRefGoogle Scholar
7.Tani, T., Li, J.F., Viehland, D., and Payne, D.A., J. Appl. Phys. 75, 3017 (1994).CrossRefGoogle Scholar
8.Li, K.K., Wang, F., and Haertling, G.H., J. Mater. Sci. 30, 1386 (1995).CrossRefGoogle Scholar
9.Yamakawa, K., Trolier-McKinstry, S., Dougherty, J.P., and Krupanidhi, S.B., Appl. Phys. Lett. 67, 2014 (1995).CrossRefGoogle Scholar
10.Dormans, G.J.M, De Keijser, M., and van Veldhoven, P.J., in Ferroelectric Thin Films II, edited by Kingon, A.I., Myers, E.R., and Tuttle, B. (Mater. Res. Soc. Symp. Proc. 243, Pittsburgh, PA, 1992), p. 203.Google Scholar
11.Xu, B., Ye, Y., Wand, Q.M., and Cross, L.E., J. Appl. Phys. 85, 3753 (1999).CrossRefGoogle Scholar
12.Melnick, B.M., Auajo, C.A.P, McMillan, L.D., Carver, D.A., and Scott, J.F., Ferroelectrics 116, 79 (1991).CrossRefGoogle Scholar
13.Shimizu, Y., Udayakumar, K.R., and Cross, L.E., J. Am. Ceram. Soc. 74, 3023 (1991).CrossRefGoogle Scholar
14.Kawano, T., Sei, T., and Tsuchiya, T., Jpn. J. Appl. Phys. 1 30, 2178 (1991).CrossRefGoogle Scholar
15.Tominaga, K., Miyajima, M., Sakashita, Y., Segawa, H., and Okada, M., Jpn. J. Appl. Phys. 1 29, L1874 (1990).CrossRefGoogle Scholar
16.Foster, C.M., Csencsits, R., Bai, G.R., Li, Z., Wills, L.A., Hiskes, R., Al-Shareef, H.N., and Dimos, D., Int. Ferroelectr. 10, 31 (1995).CrossRefGoogle Scholar
17.Ayyub, P., Chattopadhyay, S., Pinto, R., and Multani, M.S., Phys. Rev. B 57, R5559 (1998).CrossRefGoogle Scholar
18.Roy, D., Krupanidhi, S.B., and Dougherty, J.P., J. Appl. Phys. 69, 7930 (1991).CrossRefGoogle Scholar
19.Horowitz, J.S., Grabowski, K.S., Chrisey, K.B., and Leuchtner, R.E., Appl. Phys. Lett. 59, 1565 (1991).CrossRefGoogle Scholar
20.Kanno, I., Hayashi, S., Kitagawa, M., Takayama, R., and Hirao, T., Phys. Lett. 66, 145 (1995).Google Scholar
21.Xiao, D., Xiao, Z., Zhu, J., Wan, D., Guo, H., Xie, B., and Yuan, H., Appl. Phys. Lett. 58, 36 (1991).Google Scholar
22.Auciello, O.H., Gifford, K.D., and Kingon, A.I., Appl. Phys. Lett. 64, 2873 (1994).CrossRefGoogle Scholar
23.Chen, N., Bai, G.R., Foster, C.M., Auciello, O.H., Brukman, M.J., and Lanagan, M.T., in Multilayer Electronic Ceramic Devices, edited by Jean, J.H., Gupta, T.K., Nair, K.M., and Niwa, K. (Ceramic Transactions 97, American Ceramic Society, Westerville, OH, 1998), p. 367.Google Scholar
24.Bai, G.R., Chang, H.L.M, Lam, D.J., and Gao, Y., Appl. Phys. Lett. 62, 1754 (1993).CrossRefGoogle Scholar
25.Kwok, C.K. and Desu, S.B., J. Mater. Res. 8, 339 (1993).CrossRefGoogle Scholar
26.Shimizu, M., Sugiyama, M., Fujisawa, H., and Shiosake, T., Jpn. J. Appl. Phys. 33, 5167 (1994).Google Scholar
27.Lefevre, M.J., Speck, J.S., Schwartz, R.W., Dimos, D., and Lockwood, S.J., J. Mater. Res. 11, 2076 (1996).Google Scholar
28.Chen, K.C. and Mackenzie, J.D., in Better Ceramics through Chemistry IV, edited by Zelinski, B.J.J (Mater. Res. Soc. Symp. Proc. 180, Pittsburgh, PA, 1990), p. 663.Google Scholar
29.Muralt, P., Maeder, T., Sagalowicz, L., Hiboux, S., Scalese, S., Namuovic, D., Agostino, R.G., Xanthopoulos, N., Mathieu, H.J., Patthey, L., and Bullock, E.L., J. Appl. Phys. 83, 3835 (1998).CrossRefGoogle Scholar
30.Foster, C.M., Chan, S.K., Chang, M., Chiarello, R.P., Zhang, T.J., Guo, J., and Lam, D.J., J. Appl. Phys. 73, 7823 (1993).Google Scholar
31.Chen, N., Bai, G.R., Auciello, O., Koritala, R.E., and Lanagan, M.T., in Ferroelectric Thin Films VII, edited by Jones, R.E., Schwartz, R.W., Summerfelt, S., and Yoo, I.K. (Mater. Res. Soc. Symp. Proc. 541, Pittsburgh, PA, 1999), p. 345.Google Scholar
32.Shiosaki, T., Fujisawa, H. and Shimizu, M., in Proceedings of the Tenth IEEE International Symposium on Applications of Ferro-electrics, edited by Kulwicki, B.M., Amin, A. and Safari, A. (IEEE Symp. Proc. 1, Piscataway, NJ, 1996), p. 45.Google Scholar
33.Xu, B., Cross, L.E., and Ravichandran, D., J. Am. Ceram. Soc. 82, 306 (1999).CrossRefGoogle Scholar
34.Auciello, O., Gifford, K.D., and Kingon, A.I., Appl. Phys. Lett. 64, 2873 (1994).CrossRefGoogle Scholar
35.Aoki, K., Fukuda, Y., Numata, K., and Nishimura, A., Jpn. J. Appl. Phys. 34, 192 (1995).CrossRefGoogle Scholar
36.Willems, G.J., Wouters, D.J., Maes, H.E., and Nouwen, R., Int. Ferroelectr. 15, 19 (1997).CrossRefGoogle Scholar
37.Xu, B., Ye, Y., Wand, Q.M., and Cross, L.E., J. Appl. Phys. 85, 3753 (1999).CrossRefGoogle Scholar