Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-12T00:40:02.241Z Has data issue: false hasContentIssue false

Microstructure, electrical properties, and thermal stability of Au-based ohmic contacts to p-GaN

Published online by Cambridge University Press:  31 January 2011

L. L. Smith
Affiliation:
Materials Research Center, North Carolina State University, Raleigh, North Carolina 27695–7919
R. F. Davis
Affiliation:
Materials Research Center, North Carolina State University, Raleigh, North Carolina 27695–7919
M. J. Kim
Affiliation:
Center for Solid State Science, Arizona State University, Tempe, Arizona 85287–1704
R. W. Carpenter
Affiliation:
Center for Solid State Science, Arizona State University, Tempe, Arizona 85287–1704
Y. Huang
Affiliation:
Argonne National Laboratory, Argonne, Illinois 60439
Get access

Abstract

The work described in this paper is part of a systematic study of ohmic contact strategies for GaN-based semiconductors. Gold contacts exhibited ohmic behavior on p-GaN when annealed at high temperature. The specific contact resistivity (ρc) calculated from TLM measurements on Au/p-GaN contacts was 53 Ω · cm2 after annealing at 800 °C. Multilayer Au/Mg/Au/p-GaN contacts exhibited linear, ohmic current-voltage (I-V) behavior in the as-deposited condition with ρc = 214 Ω · cm2. The specific contact resistivity of the multilayer contact increased significantly after rapid thermal annealing (RTA) through 725 °C. Cross-sectional microstructural characterization of the Au/p-GaN contact system via high-resolution electron microscopy (HREM) revealed that interfacial secondary phase formation occurred during high-temperature treatments, which coincided with the improvement of contact performance. In the as-deposited multilayer Au/Mg/Au/p-GaN contact, the initial 32 nm Au layer was found to be continuous. However, Mg metal was found in direct contact with the GaN in many places in the sample after annealing at 725 °C for 15 s. The resultant increase in contact resistance is believed to be due to the barrier effect increased by the presence of the low work function Mg metal.

Type
Articles
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Shen, T. C., Gao, G. B., and Morkoç, H., J. Vac. Sci. Technol. B 10 (5), 2113 (1992).CrossRefGoogle Scholar
2.Williams, R., Modern GaAs Processing Techniques (Artech House, Norwood, MA, 1990).Google Scholar
3.Rideout, V. L., Solid State Electron. 18, 541 (1975).CrossRefGoogle Scholar
4.Marshall, E. D. and Murakami, M., in Contacts to Semiconductors, edited by L. J., Brillson (Noyes Publications, Park Ridge, NJ, 1993).Google Scholar
5.Stareev, G., Appl. Phys. Lett. 62 (22), 2801 (1993).CrossRefGoogle Scholar
6.Ragay, F. W., Leys, M. R., and Wolter, J. H., Appl. Phys. Lett. 63 (9), 1234 (1993).CrossRefGoogle Scholar
7.Henisch, H. K., Semiconductor Contacts (Clarendon Press, Oxford, 1984).Google Scholar
8.Rhoderick, E. H. and Williams, R. H., Metal-Semiconductor Contacts, 2nd ed. (Oxford University Press, New York, 1988).Google Scholar
9.Kurtin, S., McGill, T. C., and Mead, C. A., Phys. Rev. Lett. 22 (26), 1433 (1969).CrossRefGoogle Scholar
10.Wittmer, M. and Freeouf, J. L., Phys. Lett. A 173 (2), 190 (1993).CrossRefGoogle Scholar
11.Smith, L. L. and Davis, R. F., in Properties of Group III Nitrides, EMIS DataReview Series No. 11, edited by J. H., Edgar (INSPEC, Institution of Electrical Engineers, London, 1994).Google Scholar
12.Foresi, J. S., Ohmic Contacts and Schottky Barriers on GaN, Thesis, M.S.,Boston University (1992).Google Scholar
13.Foresi, J. S. and Moustakas, T. D., Appl. Phys. Lett. 62 (22), 2859 (1993).CrossRefGoogle Scholar
14.Hacke, P., Detchprohm, T., Hiramatsu, K., and Sawaki, N., Appl. Phys. Lett. 63 (19), 2676 (1993).CrossRefGoogle Scholar
15.Khan, M. R. H., Detchprohm, T., Hacke, P., Hiramatsu, K., and Sawaki, N., J. Phys. D 28, 1169 (1995).CrossRefGoogle Scholar
16.Binari, S. C., Dietrich, H. B., and Kelner, G., Electron. Lett. 30 (11), 909 (1994).CrossRefGoogle Scholar
17.Wang, C., Ailey, K. S., More, K. L., and Davis, R. F., Inst. Phys. Conf. Ser. No. 137, 417 (1994).Google Scholar
18.Smith, L. L., King, S. W., Nemanich, R., and Davis, R. F., J. Electron. Mater. 25 (5), 805 (1996).CrossRefGoogle Scholar
19.Reeves, G. K. and Harrison, H. B., IEEE Electron Device Lett. EDL-3, 111 (1982).CrossRefGoogle Scholar
20.Korn, D., Pfeifle, H., and Zibold, G., Z. Physik 270, 195 (1974).CrossRefGoogle Scholar
21.Nemanich, R. J., Benjamin, M. C., King, S. W., Bremser, M. D., Davis, R. F., Chen, B., Zhang, Z., and Bernholc, J., in Gallium Nitride and Related Materials, edited by Dupuis, R. D., Edmond, J. A., Ponce, F. A., and Nakamura, S. (Mater. Res. Soc. Symp. Proc. 395, Pittsburgh, PA, 1996).Google Scholar
22.Barnes, P. A., Zhang, X-J., Lovejoy, M. L., Drummond, T. J., Hjalmarson, H. P., Crawford, M., Shul, R. J., and Zolper, J. C., in Gallium Nitride and Related Materials, edited by Dupuis, R. D., Edmond, J. A., Ponce, F. A., and Nakamura, S. (Mater. Res. Soc. Symp. Proc. 395, Pittsburgh, PA, 1996).Google Scholar