Hostname: page-component-78c5997874-t5tsf Total loading time: 0 Render date: 2024-11-16T05:50:36.523Z Has data issue: false hasContentIssue false

Modeling of diamond growth from a microwave plasma: C2H as growth species

Published online by Cambridge University Press:  03 March 2011

Hans Rau
Affiliation:
Philips GmbH Forschungslaboratorien Aachen, Weisshausstra Be 2, D–52066 Aachen, Germany
Friederike Picht
Affiliation:
Philips GmbH Forschungslaboratorien Aachen, Weisshausstra Be 2, D–52066 Aachen, Germany
Get access

Abstract

Diamond growth experiments were performed in a microwave plasma ball reactor on silicon wafers or on a molybdenum sheet provided with cones (stamped into the sheet with a punch). All substrates had been treated by scratching with diamond powder in advance. The gas mixture used was CH4/H2, sometimes with the addition of CO. Substrate temperatures ranged from 953 to 1428 K, pressures from 100 to 400 mbar, and microwave powers from 250 to 700 W. A strong preference of diamond growth was observed on the cones in the molybdenum substrates. This is interpreted as being caused by gas transport hindrance. The resulting deposition coefficient of the “active” species is about 0.1 under all conditions investigated. The deposition experiments on silicon substrates are numerically modeled in two steps. In the first step, temperature fields and electron density and energy distributions in pure hydrogen are calculated following the method described previously. The output of this first simulation step is taken as input data for the second step. The condition is applied that chemical reaction rates due to thermal or electronic activation and diffusional flows compensate each other at every point of the reactor. In this way stationary concentrations of the 13 species in 29 elementary reactions are computed and, from these, the expected deposition profile of diamond on the silicon substrate, assuming one of the carbon-containing species to be the “active” one. When the experimental deposition profiles are compared with the calculated ones, C2H as the “active” species gives the best match to all the experimental results. CH3 and C2H2 (and perhaps others) might contribute to the diamond growth to a limited extent only.

Type
Articles
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Matsumoto, S., Sato, Y., Kamo, M., and Setaka, N., Jpn. J. Appl. Phys. Part 2, 21, L183 (1982).CrossRefGoogle Scholar
2Bachmann, P. K., Drawl, W., Knight, D., Weimer, R., and Messier, R. F., in Extended Abstracts No. 15, Diamond and Diamond-Like Materials Synthesis, edited by Johnson, G. H., Badzian, A. R., and Geis, M. W. (Materials Research Society, Pittsburgh, PA, 1988).Google Scholar
3Matsui, Y., Yuuki, A., Sahara, M., and Hirose, Y., Jpn. J. Appl. Phys. 28, 1718 (1989).CrossRefGoogle Scholar
4Ohtake, N. and Yoshikawa, M., J. Electrochem. Soc. 137, 717 (1990).CrossRefGoogle Scholar
5Tsuda, M., Nakajima, M., and Oikawa, S., J. Am. Chem. Soc. 108, 5780 (1986).CrossRefGoogle Scholar
6Tsuda, M., Nakajima, M., and Oikawa, S., Jpn. J. Appl. Phys. 26, L527 (1987).CrossRefGoogle Scholar
7Frenklach, M. and Spear, K. E., J. Mater. Res. 3, 133 (1988).CrossRefGoogle Scholar
8Huang, D., Frenklach, M., and Maroncelli, M., J. Phys. Chem. 92, 6379 (1988).CrossRefGoogle Scholar
9Belton, D. N. and Harris, S. J., J. Chem. Phys. 96, 2371 (1992).CrossRefGoogle Scholar
10Harris, S. J., Appl. Phys. Lett. 56, 2298 (1990).CrossRefGoogle Scholar
11Harris, S. J., J. Appl. Phys. 65, 3044 (1989).CrossRefGoogle Scholar
12Martin, L. R. and Hill, M. W., J. Mater. Sci. Lett. 9, 621 (1990).CrossRefGoogle Scholar
13Harris, S. J. and Martin, L. R., J. Mater. Res. 5, 2313 (1990).CrossRefGoogle Scholar
14Yasuda, T., Miyamoto, K., Ihara, M., and Komiyama, H., in New Diamond Science and Technology, edited by Messier, R., Glass, J. T., Butler, J. E., and Roy, R. (Mater. Res. Soc. Symp. Int. Proc. NDST–2, Pittsburgh, PA, 1991), p. 353.Google Scholar
15Chu, C. J., D'Evelyn, M. P., Hauge, R. H., and Margrave, J. L., in New Diamond Science and Technology, edited by Messier, R., Glass, J. T., Butler, J. E., and Roy, R. (Mater. Res. Soc. Symp. Int. Proc. NDST–2, Pittsburgh, PA, 1991), p. 307.Google Scholar
16D'Evelyn, M. P., Chu, C. J., Hauge, R. H., and Margrave, J. L., J. Appl. Phys. 71, 1528 (1992).CrossRefGoogle Scholar
17Rau, H. and Picht, F., J. Mater. Res. 7, 934 (1992).CrossRefGoogle Scholar
18Rau, H. and Trafford, B., J. Phys. D: Appl. Phys. 23, 1637 (1990).CrossRefGoogle Scholar
19Rau, H. and Picht, F., accepted for publication: J. Phys. D: Appl. Phys. 26 (8), August 1993 (in press)..CrossRefGoogle Scholar
20Kubiak, G. D., Hamza, A. V., Stolen, R. H., Sowa, E. C., Kolasinski, K. W., and Van Hove, M. A., in New Diamond Science and Technology, edited by Messier, R., Glass, J. T., Butler, J. E., and Roy, R. (Mater. Res. Soc. Symp. Int. Proc. NDST–2, Pittsburgh, PA, 1991), p. 21.Google Scholar
21Brenner, D. W., Dunlap, B. I., Mintmire, J. W., Mowrey, R. C., and White, C. T., in New Diamond Science and Technology, edited by Messier, R., Glass, J. T., Butler, J. E., and Roy, R. (Mater. Res. Soc. Symp. Int. Proc. NDST–2, Pittsburgh, PA, 1991), p. 39.Google Scholar
22Waclawski, B. J., Pierce, D. T., Swanson, N., and Celotta, R. J., J. Vac. Sci. Technol. 21, 368 (1982).CrossRefGoogle Scholar
23Goodwin, D. G., Appl. Phys. Lett. 59, 277 (1991).CrossRefGoogle Scholar
24Warnatz, J., in Combustion Chemistry, edited by Gardiner, W. C. Jr. (Springer-Verlag, New York, Berlin, Heidelberg, Tokyo, 1984).Google Scholar
25Harris, S. J. and Weiner, A. M., J. Appl. Phys. 67, 6520 (1990).CrossRefGoogle Scholar
26Dittmer, G., Philips Forschungslaboratorien Aachen, Germany, private communication.Google Scholar
27Glarborg, P., Miller, J. A., and Kee, R. J., Combustion and Flame 65, 177 (1986).CrossRefGoogle Scholar
28Winters, H. F., J. Chem. Phys. 63, 3462 (1975).CrossRefGoogle Scholar
29Hsu, W. L., Appl. Phys. Lett. 59, 1427 (1991).CrossRefGoogle Scholar
30Mintmire, J. W., Brenner, D. W., Dunlap, B. I., Mowrey, R. C., and White, C. T., in New Diamond Science and Technology, edited by Messier, R., Glass, J. T., Butler, J. E., and Roy, R. (Mater. Res. Soc. Symp. Int. Proc. NDST–2, Pittsburgh, PA, 1991), p. 57.Google Scholar
31Pederson, M. R., Jackson, K. A., and Pickett, W. E., in New Diamond Science and Technology, edited by Messier, R., Glass, J. T., Butler, J. E., and Roy, R. (Mater. Res. Soc. Symp. Int. Proc. NDST–2, Pittsburgh, PA, 1991), p. 29.Google Scholar
32Mehandru, S. P. and Anderson, A. B., J. Mater. Res. 5, 2286 (1990).CrossRefGoogle Scholar
33Harris, S. J. and Weiner, A. M., private communication.Google Scholar