Hostname: page-component-84b7d79bbc-c654p Total loading time: 0 Render date: 2024-07-25T14:33:26.673Z Has data issue: false hasContentIssue false

Morphology of TiSi2 and ZrSi2 on Si(100) and (111) surfaces

Published online by Cambridge University Press:  03 March 2011

C.A. Sukow
Affiliation:
Department of Physics and Department of Materials Science and Engineering, North Carolina State University, Raleigh, North Carolina 27695-8202
R.J. Nemanich
Affiliation:
Department of Physics and Department of Materials Science and Engineering, North Carolina State University, Raleigh, North Carolina 27695-8202
Get access

Abstract

The morphologies of ZrSi2 on Si(111) and TiSi2 on Si(111) and (100) have been investigated, and the results compared and contrasted. Films were prepared by UHV deposition of Ti or Zr onto clean, reconstructed Si(100) or (111) substrates, and reacted by in situ annealing. The sheet resistivity of the ZrSi2 was measured and found to be 33-42 μΩ-cm. The morphologies were examined by transmission and scanning electron microscopy. In particular, the islanding properties were studied; both the temperature of the onset of islanding and the island characteristics were measured. The surface and interface energies have been determined from the contact angles of the silicide islands, according to a solid-state capillarity model. The system of ZrSi2 on Si(111) was found to have surface and interface energies lower than those of the system of TiSi2 on Si(100), but higher than those of the system TiSi2 on Si(111). ZrSi2 on Si(111) was found to island at a higher temperature than TiSi2 on either substrate, a result attributed to kinetic effects. Areal coverage of the islands was measured, and the results were consistent with the solid-state capillarity model. For both TiSi2 and ZrSi2, increasing faceted structure was observed with increasing anneal temperature. Preferred faceting planes were found to be of Si(111) and (100) type for TiSi2 islands and of Si(111) type for ZrSi2. Faceted islands were apparently epitaxial. As the solid-state capillarity model does not directly apply to islands with a faceted structure, an observation of the percentage of faceted islands produced by different annealing temperatures was used to suggest the processing conditions in which the model is applicable.

Type
Articles
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Murarka, S. P., J. Vac. Sci. Technol. 17, 775 (1980).CrossRefGoogle Scholar
2Jeon, H., Sukow, C. A., Honeycutt, J. W., Rozgonyi, G. A., and Nemanich, R. J., J. Appl. Phys. 71, 4269 (1992).CrossRefGoogle Scholar
3Jeon, H., Sukow, C. A., Honeycutt, J. W., Humphreys, T. P., Rozgonyi, G. A., and Nemanich, R. J. (Mater. Res. Soc. Symp. Proc. 181, Pittsburgh, PA, 1990), p. 595.Google Scholar
4Engström, I. and Loennberg, B., J. Appl. Phys. 63, 4476 (1988).CrossRefGoogle Scholar
5Pearson, W. B., The Crystal Chemistry and Physics of Metals and Alloys (John Wiley-Interscience, New York, 1972).Google Scholar
6Pomoni, K. and Salmi, J., J. Phys. D (Appl. Phys.) 24, 727 (1991).CrossRefGoogle Scholar
7Setton, M. and Speigel, J. v. d., J. Appl. Phys. 70, 193 (1991).CrossRefGoogle Scholar
8Holloway, K. and Sinclair, R., J. Appl. Phys. 61, 1359 (1987).Google Scholar
9Beyers, R. and Sinclair, R., J. Appl. Phys. 57, 5240 (1985).CrossRefGoogle Scholar
10Butz, R., Rubloff, G. W., Tan, T. Y., and Ho, P. S., Phys. Rev. B 30, 5421 (1984).CrossRefGoogle Scholar
11Raaijmakers, I. J. M., Reader, A. H., and Oosting, P. H., J. Appl. Phys. 63, 2790 (1988).CrossRefGoogle Scholar
12Wallart, X., Nys, J. P., and Dalmai, G., Appl. Surf. Sci. 38, 49 (1989).Google Scholar
13van Houtum, H. J. W., Raaijmakers, I. J. M. M., and Menting, T. J. M., J. Appl. Phys. 61, 4269 (1987).CrossRefGoogle Scholar
14Yamauchi, T., Zaima, S., Mizuno, K., Kitamura, H., Koide, Y., and Yasuda, Y., Appl. Phys. Lett. 57, 1105 (1990).CrossRefGoogle Scholar
15Cheng, H. C. and Chen, L. J., Appl. Phys. Lett. 46, 562 (1985).CrossRefGoogle Scholar
16Cheng, J. Y. and Chen, L. J., J. Appl. Phys. 68, 4002 (1990).CrossRefGoogle Scholar
17Yamauchi, T., Zaima, S., Mizuno, K., Ktamura, H., Koide, Y., and Yasuda, Y., J. Appl. Phys. 69, 7050 (1991).CrossRefGoogle Scholar
18Sukow, C. A., M. S. Thesis, North Carolina State University (1992).Google Scholar
19Revesz, P., Zheng, L. R., Hung, L. S., and Mayer, J. W., Appl. Phys. Lett. 48, 1591 (1986).CrossRefGoogle Scholar
20Gupta, A., West, G. A., and Beeson, K. W., J. Appl. Phys. 58, 3573 (1985).CrossRefGoogle Scholar
21Burmester, R., Joswig, H., and Mitwalsky, A., in 19th European Solid State Device Research Conference, edited by Heuberger, A., Ryssel, H., and Lange, P. (Springer-Verlag, Berlin, 1989), p. 233.Google Scholar
22Omura, Y., Inokawa, H., and Izumi, K., J. Mater. Res. 6, 1238 (1991).CrossRefGoogle Scholar
23Kuwano, H., Phillips, J. R., and Mayer, J. W., Appl. Phys. Lett. 56, 440 (1990).Google Scholar
24Chen, L. J., Wu, I. W., Chu, J. J., and Nieh, C. W., J. Appl. Phys. 63, 2778 (1988).Google Scholar
25Catana, A., Heintze, M., Lévy, F., Schmid, P. E., and Stadelmann, P., Semiconductor Silicon, edited by Harbeke, G. C. and Schults, M. J. (Springer Series in Materials Science, Berlin, 1989), Vol. 13, p. 276.CrossRefGoogle Scholar
26Catana, A., Schmid, P. E., Heintze, M., and Lévy, F., J. Appl. Phys. 67, 1820 (1990).CrossRefGoogle Scholar
27Mu, S., Lue, J., and Wu, I., J. Phys. Chem. Solids 49, 1389 (1988).CrossRefGoogle Scholar
28Bourret, A., d'Heurle, F.M., LeGoues, F. K., and Charai, A., J. Appl. Phys. 67, 241 (1990).Google Scholar
29Botha, A. P. and Pretorius, R., in Thin Films and Interfaces, edited by Ho, P. S. and Tu, K. N. (Mater. Res. Soc. Symp. Proc. 10, North Holland, Amsterdam, 1982), p. 129.Google Scholar
30Jeon, H. and Nemanich, R. J., Thin Solid Films 184, 357 (1990).CrossRefGoogle Scholar
31Nemanich, R. J., Fiordalice, R., and Jeon, H., IEEE J. Quant. Elect. 25, 997 (1989).Google Scholar
32Nolan, T. P., Sinclair, R., and Beyers, R., J. Appl. Phys. 71, 720 (1992).CrossRefGoogle Scholar
33d'Heurle, F. M., J. Mater. Res. 3, 167 (1988).CrossRefGoogle Scholar
34Chu, J. J., Wu, I. C., and Chen, L. J., J. Appl. Phys. 61, 549 (1987).CrossRefGoogle Scholar
35Adam, N. K., The Physics and Chemistry of Surfaces (Dover, New York, 1968).Google Scholar
36Jeon, H., Thesis, North Carolina State University (1990).Google Scholar
37Igarashi, Y., Yamaji, T., Nishikawa, S., and Ohno, S., Appl. Surf. Sci. 41–42, 282 (1989).Google Scholar
38Pico, C. A. and Lagally, M. G., J. Appl. Phys. 64, 4957 (1988).CrossRefGoogle Scholar
39Russ, J. C., Computer-Assisted Microscopy: The Measurement and Analysis of Images (Plenum, New York, 1990).CrossRefGoogle Scholar
40Takai, T., Halicioglu, T., and Tiller, W. A., Surf. Sci. 104, 341 (1985).Google Scholar
41Kropman, B. L., Sukow, C. A., and Nemanich, R. J., in Evolution of Surface and Thin Film Microstructure, edited by Atwater, H. A., Chason, E. H., Grabow, M. L., and Lagally, M. G. (Mater. Res. Soc. Symp. Proc. 280, Pittsburgh, PA, 1993), pp. 589592.Google Scholar
42Kim, K. H., Jeoung, J. L., Seo, D. J., Choi, C. K., Hong, S. R., Jeoung, D. K., Kim, S. C., Lee, J. Y., and Nicolet, M. A., J. Appl. Phys. 71, 3812 (1992).CrossRefGoogle Scholar
43Fung, M. S., Cheng, H. C., and Chen, L. J., Appl. Phys. Lett. 47, 1312 (1985).Google Scholar