Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-23T02:35:08.786Z Has data issue: false hasContentIssue false

Multitechnique surface spectroscopic studies of plasma-modified polymers I: H2O/Ar plasma-modified polymethylmethacrylates

Published online by Cambridge University Press:  31 January 2011

Thomas J. Hook
Affiliation:
Department of Chemistry, University at Buffalo, SUNY, Buffalo, New York 14214
Joseph A. Gardella Jr.
Affiliation:
Department of Chemistry, University at Buffalo, SUNY, Buffalo, New York 14214
Lawrence Salvati Jr.
Affiliation:
Perkin-Elmer Physical Electronics Laboratories, 5 Progress Street, Edison, New Jersey 08820
Get access

Abstract

Results from x-ray photoelectron spectroscopy (XPS or ESCA), low-energy ion scattering spectrometry (LEIS or ISS); and Fourier transform infrared spectroscopy (FTIR) analyses are presented for unmodified and modified poly (methylmethacrylate) (PMMA) polymer films. Analysis of the unmodified PMMA polymers (isotactic, syndiotactic, and atactic) via ESCA, ISS, and FTIR, established the surface composition, bonding, and functionality before the modification was employed. An rf-plasma glow discharge created from an Ar/H2O gas mixture at different exposure times and power levels was used to treat the polymer surface. Subsequent ESCA, ISS, and FTIR analyses of these modified PMMA's show the effects of surface modification in terms of a model of structural differences, over a limited depth (50–100 Å). The composition and functionality changes of the resulting surfaces are discussed with respect to proposed mechanisms of the plasma reaction and differences in tacticity of the reactant. A two-step reaction mechanism involving reactive decarboxylation/reduction followed by H2O adsorption is proposed to understand the spectroscopic results.

Type
Articles
Copyright
Copyright © Materials Research Society 1987

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Hercules, D. M., Anal. Chem. 50, 739A, (1978).Google Scholar
2Gardella, J. A. Jr., and Hercules, D. M., Anal. Chem. 53, 1879 (1981).Google Scholar
3Gardella, J. A. Jr., Trends Anal. Chem. 3 (5), 129 (1984).Google Scholar
4Gardella, J. A. Jr., and Hercules, D. M., Anal. Chem. 52, 226 (1980).Google Scholar
3Gardella, J. A. Jr., Chen, J. S., Magill, J. H., and Hercules, D. M., J. Am. Chem. Soc. 105, 4536 (1983).CrossRefGoogle Scholar
6Schmitt, R. L., Gardella, J. A. Jr., Chin, R. L., Magill, J. H., and Salvati, L. Jr., Macromolecules 18, 2675 (1985).Google Scholar
7Gardella, J. A. Jr., Schmitt, R. L., Wandass, J. H., and Chin, R. L., in Advances in Materials Characterization II, Materials Science Research, edited by Snyder, R. L., Condrate, R. A. Jr., and Johnson, P. F. (Plenum, New York, 1985), Vol. 19, p. 209.Google Scholar
8Schmitt, R. L., Gardella, J. A. Jr., and Salvati, L. Jr., Macromolecules 19 (3), 648 (1986).Google Scholar
9Hook, T. J., Schmitt, R. L, Gardella, J. A. Jr., Salvati, L. Jr., and Chin, R. L., Anal. Chem. 58 (7), 1285 (1986).CrossRefGoogle Scholar
10Schultz, R. C., in Contemporary Biomaterials, edited by Bore-tos, J. W. and Eden, M. (Noyes, Park Ridge, NJ, 1984), Chap. 19, p. 332.Google Scholar
11Haller, I., Hatzakis, M., and Srinivasan, R., IBM J. Res. Develop. 12 (5), 251 (1968).Google Scholar
12Gardella, J. A. Jr., Novak, F. P., and Hercules, D. M., Anal. Chem. 56, 1371 (1984).CrossRefGoogle Scholar
13Gregonis, D. E. and Andrade, J. D., in Surface and Interfacial Aspects' of Biomedical Polymers, Surface Chemistry and Physics, edited by Andrade, J. D. (Plenum, New York, 1985), Vol. 1, Chap. 3, p. 43.Google Scholar
14Hoffman, A. S., Advances Polym. Sci. 57, 141 (1984).CrossRefGoogle Scholar
15Dilks, A. J., Polym. Sci. Polym. Chem. Ed. 19, 1319 (1981).Google Scholar
16Gerenser, L. J., Elman, J. F., Mason, M. G., and Pochan, J. M., Polymer 26, 1162 (1985).CrossRefGoogle Scholar
17Ogita, T., Ponomarev, A. N., Nishimoto, S., and Kagiya, T. J., Macro-mol. Sci. Chem. A 8(22), 1135 (1985).Google Scholar
18Briggs, D. and Kendall, C. R., Int. J. Adhesion Adhesives 2(1), 13 (1982).CrossRefGoogle Scholar
19Briggs, D. and Kendall, C. R., Polymer 20, 1053 (1979).CrossRefGoogle Scholar
20Nuzzo, R. G. and Smolinsky, G., Macromolecules 17, 1013 (1984).CrossRefGoogle Scholar
21Ohmichi, T., Tamaki, H., Kawasaki, H., and Tatsuta, S., in Physiochemical Aspects of Polymer Surfaces, edited by Mittal, K. L. (Plenum, New York, 1983), Vol. 2, p. 793.Google Scholar
22Briggs, D., Ranee, D. G., Kendall, C. R., and Blythe, A. R., Polymer 21, 895 (1980).CrossRefGoogle Scholar
23Evans, J. F., Gibson, J. H., Moulder, J. F., Hammond, J. S., and Goretzki, H., Fresenius Z. Anal. Chem. 319, 841 (1984).CrossRefGoogle Scholar
24Prohaska, G. W., Johnson, E. D., and Evans, J. F., J. Polym. Sci. Polym. Chem. Ed. 22, 2953 (1984).CrossRefGoogle Scholar
25Burkstrand, J. M., J. Vac. Sci. Technol. 15, 223 (1978).Google Scholar
26Washo, B. D., Proceedings from the First Annual International Conference of Plasma Chemistry and Technology, edited by Boenig, H. V. (Technomic, Lancaster, PA, 1983), p. 131.Google Scholar
27Dilks, A., Anal. Chem. 53, 802A (1981).Google Scholar
28Hook, T. J., Gardella, J. A. Jr., and Salvati, L. Jr., J. Mater. Res. 2, 132 (1987).CrossRefGoogle Scholar
29Clark, D. T., Handbook of'X-ray and Ultra-violet Photoelectron Spectroscopy, edited by Briggs, D. (Heyden, London, 1977), p. 153.Google Scholar
30Umana, M., Denisevich, P., Rolison, D. R., and Murray, R. W., Anal. Chem. 53, 1170 (1981).CrossRefGoogle Scholar
31Baun, W. L., Quantitative Surface Analysis of'Materials, ASTM STP 643, edited by Mclntyre, N. S. (American Society for Testing and Materials, Philadelphia, PA, 1978), p. 150.Google Scholar
32Moulder, J. F. and Hammond, J. S., Res. Dev. 27(2), 144 (1985).Google Scholar
33Zisman, W., Contact Angle, Wettability and Adhesion, Adv. Chem. Ser. 43 (American Chemical Society, Washington, 1964), p. 1.CrossRefGoogle Scholar
34Seah, M. P. and Dench, W. A, SIA Suf. Inter. Anal. 1, 2 (1979).Google Scholar
35Roberts, R. F., Allara, D. L., Pryde, C. A., Buchanan, D. N. E., and Hobbins, N. D., SIA Suf. Inter. Anal. 2, 5 (1980).Google Scholar
36Hummel, D. O. and Scholl, F., Atlas of Polymer and Plastics Analysis (Springer, Munich, 1982), 2nd. ed., Vol. 1, p. 267.Google Scholar
37Mirabella, F. M. Jr., J. Polym. Sci. Polym. Phys. 23, 861 (1985).CrossRefGoogle Scholar
38Silverstein, R. M., Bassler, G. C., and Morrill, T. C., Spectrometric Identification of Organic Compounds (Wiley, New York, 1981), 4th ed., p. 105.Google Scholar
39Bellamy, L. J., The Infrared Spectra of Complex Molecules (Chapman and Hall, London, 1975), 3rd ed., Vol. 1, p. 203.CrossRefGoogle Scholar
40Ullevig, D. M. and Evans, J. F., Anal. Chem. 52, 1467 (1980).Google Scholar
41Vargo, T. G., Gardella, J. A. Jr., and Salvati, L. Jr, . (work in progress).Google Scholar