Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-25T09:39:23.509Z Has data issue: false hasContentIssue false

Nanocrystalline nickel and nickel-copper alloys: Synthesis, characterization, and thermal stability

Published online by Cambridge University Press:  31 January 2011

H. Natter
Affiliation:
Physikalische Chemie, Universität des Saarlandes, Im Stadtwald, D-66123 Saarbrücken, Germany
M. Schmelzer
Affiliation:
Physikalische Chemie, Universität des Saarlandes, Im Stadtwald, D-66123 Saarbrücken, Germany
R. Hempelmann*
Affiliation:
Physikalische Chemie, Universität des Saarlandes, Im Stadtwald, D-66123 Saarbrücken, Germany
*
a) Author to whom correspondence should be addressed.
Get access

Abstract

Pulsed electrodeposition is a simple, yet versatile method for the production of nanostructured metals. For n-nickel we determine the influence of the physical and chemical deposition parameters on the nanostructure of the deposits and demonstrate that the grain size can be tuned to values between 13 and 93 nm, with rather narrow grain size distribution. The thermal stability of our n-nickel as studied by x-ray diffraction and differential thermal analysis exhibits no detectable grain growth up to temperatures of about 380 K and an initial behavior at 503 K followed by a regime of anomalous grain growth. For nanocrystalline Ni1-x Cux (Monel-metal) we demonstrate that alloy formation occurs at room temperature and that both chemical composition and grain size can be controlled by the pulse parameters and by appropriate organic additives.

Type
Articles
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Gleiter, H., Prog. Mater. Sci. 33, 223 (1989).CrossRefGoogle Scholar
2.Granqvist, C. G. and Buhrman, R. A., J. Appl. Phys. 47, 2200 (1976).CrossRefGoogle Scholar
3.Birringer, R. and Gleiter, H., Encyclopedia of Material Science and Engineering: Supplement 1, edited by Cahn, R. W. and Beaver, M. B. (Pergamon Press, Oxford, 1988), p. 339.Google Scholar
4.Gleiter, H., Phys. Bl¨atter 47, 753 (1991).CrossRefGoogle Scholar
5.Koch, C. C. and Cho, Y. S., Nanostruct. Mater. 1, 207 (1992).CrossRefGoogle Scholar
6.Niemann, G. W., Weertman, J. R., and Siegel, R. W., J. Mater. Res. 6, 1012 (1991).CrossRefGoogle Scholar
7.Candlish, L. E., Kear, B. H., and Kim, B. H., Nanostruct. Mater. 1, 119 (1992).CrossRefGoogle Scholar
8.Yoshizawa, Y., Oguma, S., and Yamauchi, K., J. Appl. Phys. 64, 6044 (1988).CrossRefGoogle Scholar
9.Rofagha, R., Langer, R., El-Sherik, A. M., Erb, U., Palumbo, G., and Aust, K. T., Scripta Metall. Mater. 25, 2867 (1991)CrossRefGoogle Scholar
10.Palumbo, G., Gonzalez, F., Brennenstuhl, A. M., Erb, U., Shmayda, W., and Lichtenberger, P. C., Nanostruct. Mater. 9, 737 (1997).CrossRefGoogle Scholar
11.Palumbo, G., Lichtenberger, P. C., Gonzalez, F., and Brennenstuhl, A. M., U.S. Patent 5,538,615 (1996).Google Scholar
12.de la Rive, A., Compt. Rend. 4, 835 (1837).Google Scholar
13.Coehn, A., Deutsches Patent 75482 (1893).Google Scholar
14.Rosing, B., Z. Elektrochem. 2, 550 (1896).CrossRefGoogle Scholar
15. G. McMahon and Erb, U., Microstruct. Sci. 17, 447 (1989).Google Scholar
16.Kleinekathöfer, W., Raub, Ch. J., and Raub, E., Metalloberfl. 36, 411 (1982).Google Scholar
17.Natter, H., Krajewski, T., and Hempelmann, R., Bunsenges, Ber.. Phys. Chem. 100, 55 (1996).CrossRefGoogle Scholar
18.Natter, H. and Hempelmann, R., J. Phys. Chem. 100, 19,525 (1996).CrossRefGoogle Scholar
19.El-Sherik, A. M. and Erb, U., J. Mater. Sci. 30, 5743 (1995).CrossRefGoogle Scholar
20.Choo, R. T. C., Toguri, J. M., El-Sherik, A. M., and Erb, U., J. Appl. Electrochem. 25, 384 (1995).CrossRefGoogle Scholar
21.El-Sherik, A. M. and Erb, U., Nanocrystalline Metals and Process of Producing the Same, U.S. Patent 5,352,266 (1994).Google Scholar
22.Cziráki, Á.Fogarassy, B., Geröcs, I., Tóth-Kádár, E., and Bakonyi, I., J. Mater. Sci. 29, 4771 (1994).CrossRefGoogle Scholar
23.Bakonyi, I., Tóth-Kádár, E., Pogány, L., Cziráki, Á, Geröcs, I., Varga-Josepovits, K., Arnold, B., and Wetzig, K., Surf. Coat. Technol. 78, 124 (1996).CrossRefGoogle Scholar
24.Soetratmo, M., Natter, H., Hempelmann, R., Hartmann, O., Wäppling, R., and Ekström, M., Hyperfine Interactions 105, 245 (1997).CrossRefGoogle Scholar
25.Richter, H., Wang, Z. P., and Ley, L., Solid State Commun. 39, 625 (1981).CrossRefGoogle Scholar
26.Mehta, S. C., Smith, D. A., and Erb, U., Mater. Sci. Eng. A204, 227 (1995).CrossRefGoogle Scholar
27.Klement, U., Erb, U., El-Sherik, A. M., and Aust, K. T., Mater. Sci. Eng. A203, 177 (1995).CrossRefGoogle Scholar
28.Warren, B. E., X-Ray Diffraction (Addison-Wesley, Reading, MA, 1968).Google Scholar
29.Warren, B. E. and Averbach, L. E., J. Appl. Phys. 21, 536 (1950).CrossRefGoogle Scholar
30.Warren, B. E. and Averbach, L. E., J. Appl. Phys. 23, 497 (1952).CrossRefGoogle Scholar
31.Klug, H. P. and Alexander, L. E., X-Ray Diffraction Procedures, 2nd ed. (John Wiley, New York, 1974).Google Scholar
32.Scherrer, P., Göttinger Nachrichten 2, 98 (1918).Google Scholar
33.Balzar, D., J. Res. Natl. Inst. Stand. Technol. 98, 321 (1993).CrossRefGoogle Scholar
34.Smith, W. L., J. Appl. Crystallogr. 9, 187 (1976).CrossRefGoogle Scholar
35.Krill, C. E. and Birringer, R., Philos. Mag. A (in print).Google Scholar
36.Roth, C. C. and Leidheiser, H. Jr., J. Electrochem. Soc. 133, 2491 (1953).Google Scholar
37.Watts, O. P., Trans. Am. Electrochem. Soc. 29, 395 (1916).Google Scholar
38.Hoffmann, M. and Birringer, R., Acta Mat. 44, 2729 (1996).CrossRefGoogle Scholar
39.Haasz, T. R., Aust, K. T., Palumbo, G., A. M. El-Sherik, and U. Erb, Scripta Metall. et Mater. 32, 423 (1995).Google Scholar
40.Boylan, K., Ostrander, D., Erb, U., Palumbo, G., and Aust, K. T., Scripta Metall. et Mater. 25, 2711 (1991).CrossRefGoogle Scholar
41.Christian, J. W., The Theory of Transformations in Metals and Alloys, 2nd ed. (Pergamon Press, Oxford, 1975).Google Scholar
42.Gottstein, G., Rekristallisation Metallischer Werkstoffe (Deutsche Gesellschaft für Metallkunde, 1984).Google Scholar
43.Kleber, W., Einf¨uhrung in die Kristallographie, 17th ed. (Verlag Technik GmbH, Berlin, 1990).Google Scholar
44.Erb, U., El-Sherik, A. M., Palumbo, G., and Aust, K. T., Nanostruct. Mater. 2, 383 (1993).CrossRefGoogle Scholar
45.Volmer, M. and Weber, A. Z., Die Kinetik der Phasenbildung (Verlag Steinkopff, Dresden, 1939).Google Scholar
46.Volmer, M. and Weber, A. Z., Z. Phys. Chem. 119, 277 (1926).CrossRefGoogle Scholar
47.Puippe, J. C. and Ibl, N., Plating and Surface Finishing 67, 68 (1980).Google Scholar
48.Fischer, H., Reine und angewandte Metallkunde in Einzeldarstellungen: Elektrolytische Abscheidung und Elektrokristallisation von Metallen (Springer Verlag, Berlin, 1954).CrossRefGoogle Scholar
49.Bockris, J. OAM. and Razumney, G. A., Fundamental Aspects of Electrocrystallization (Plenum Press, New York, 1967).CrossRefGoogle Scholar
50.Gertsman, V. Y. and Birringer, R., Scripta Metall. et Mater. 30, 577 (1994).CrossRefGoogle Scholar
51.Natter, H., Ph. D. Thesis, Saarbrücken, Germany (1996).Google Scholar
52.Foerster, F., Z. Elektrochem. 22, 85 (1916).Google Scholar
53.Foerster, F., Ber. Bunsenges. Phys. Chem. 38, 2940 (1905).Google Scholar
54.Salt, F. W., Trans. Faraday Soc., Electrode Processes, 169 (1947).CrossRefGoogle Scholar