Published online by Cambridge University Press: 31 January 2011
The Maxwell–Garnett model for isotropic chiral spherical inclusions in free space has been briefly reviewed, and pertinent results for the effective intrinsic and extrinsic properties of the composite medium, along with useful Taylor expansions, have been obtained in the Drude–Born–Fedorov representation. It has been shown that this model does not yield the chirality parameter of the composite independently of the permeability and the permittivity, and treats the permeability and the permittivity as duals of each other. Finally, even if the inclusions are nonmagnetic, the composite medium may not be necessarily so. It is anticipated that the formulae derived here will not only assist in the formulation of more rigorous multiple scattering theories, but will also aid designers of chiral composites.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.