Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-09T13:03:51.907Z Has data issue: false hasContentIssue false

Organic–inorganic sol-gel thick films for humidity barriers

Published online by Cambridge University Press:  31 January 2011

Andrei Jitianu
Affiliation:
Department of Materials Science and Engineering, Rutgers University, Piscataway, New Jersey 08854
Glenn Amatucci
Affiliation:
Department of Materials Science and Engineering, Rutgers University, Piscataway, New Jersey 08854
Lisa C. Klein*
Affiliation:
Department of Materials Science and Engineering, Rutgers University, Piscataway, New Jersey 08854
*
a)Address all correspondence to this author. e-mail: licklein@rci.rutgers.edu
Get access

Abstract

Hybrid thick films were deposited on Surlyn, a copolymer of poly(ethylene- co-methacrylic acid) and a common adhesion film for metal surfaces. Hybrid organic–inorganic materials were prepared by a sol-gel process. Methyltriethoxysilane (MTES) with tetraethoxysilane (TEOS), phenyltriethoxysilane (PhTES) with TEOS, and methyltrimethoxysilane (MTMS) with tetramethoxysilane (TMOS) were investigated. The inorganic component was selected to form the network for the film, while the organic component was selected to repel water and fill porosity. The films were deposited on Surlyn and on glass slides. The properties of the films were investigated using attenuated total reflection Fourier transform infrared (FTIR) and Raman spectroscopy. Contact-angle measurements indicated that the contact angle increased from ∼76.5° for Surlyn alone to ∼89.6° for Surlyn coated with MTES.

Type
Articles
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Lews, J.: Material challenge for flexible organic devices. Mater. Today 9(4), 38 2006CrossRefGoogle Scholar
2Burrows, P.E., Graff, G.L., Gross, M.E., Martin, P.M., Shi, M.K., Hall, M., Mast, E., Bonham, C., Bennett, W.Sullivan, M.B.: Ultra barrier flexible substrates for flat panel displays. Display 22, 65 2001CrossRefGoogle Scholar
3Graff, G.L., Williford, R.E.Burrows, P.E.: Mechanisms of vapor permeation through multilayer barrier films: Lag time versus equilibrium permeation. J. Appl. Phys. 96, 1840 2004CrossRefGoogle Scholar
4Sobrinho, A.S. da Silva, Czeremuszkin, G., Latreche, M.Wertheimer, M.R.: Defect-permeation correlation for ultrathin transparent barrier coatings on polymers. J. Vac. Sci. Technol., A 18(1), 149 2000CrossRefGoogle Scholar
5Vogt, B.D., Lee, H-J., Prabhu, V.M., DeLongchamp, D.M., Lin, E.K.Wu, W-I.: X-ray and neutron reflectivity measurements of moisture transport through model multilayered barrier films for flexible displays. J. Appl. Phys. 97(11), 114509 2005CrossRefGoogle Scholar
6Burrows, P.E., Bulovic, V., Forrest, S.R., Sapochak, L.S., McCarty, D.M.Thomson, M.E.: Reliability and degradation of organic light-emitting devices. Appl. Phys. Lett. 65(23), 2922 1994CrossRefGoogle Scholar
7Burrows, P.E., Graff, G.L., Gross, M.E., Martin, P.M., Hall, M., Mast, E., Bonham, C., Bennett, W., Michalski, L., Weaver, M., Brown, J.J., Fogarty, D.Sapochak, L.S.: Gas permeation and lifetime test on polymer-based barrier coatings. Vol. 4105, Proc. SPIE, 2001 75CrossRefGoogle Scholar
8Jerome, R.Mazurek, M.: Synthesis and characterisation of the molecular structure in Ionomers: Synthesis, Structure, Properties and Applications, edited by M.R. Tant, K.A. Mauritz, and G.L. Wilkes Blackie Academic and Professional London 1997 3CrossRefGoogle Scholar
9Randell, A.G.: Ionomeric plastics. Kunststoffe 55(5), 316 1965Google Scholar
10Eisenberg, A.: Clustering of ions in organic polymers: A theoretical approach. Macromolecules 3(2), 147 1970CrossRefGoogle Scholar
11Watanabe, H.: Patent No. JP 2002011116, 2002Google Scholar
12Reed, S.T.Ashley, C.S.: Sol-gel protective films for metal solar mirrors in Better Ceramics Through Chemistry III,, edited by C.J. Brinker, D.E. Clark, and D.R. Ulrich Mater. Res. Soc. Symp. Proc. 121 Pittsburgh, PA 1988 631CrossRefGoogle Scholar
13Ashley, C.S., Reed, S.T.Mahoney, A.R.: Planarization of metal substrates for solar mirrors in Better Ceramics Through Chemistry III,, edited by C.J. Brinker, D.E. Clark, and D.R. Ulrich Mater. Res. Soc. Symp. Proc. 121 Pittsburgh, PA 1988 635CrossRefGoogle Scholar
14Neto, P. DeLima, Atik, M., Avaca, L.A.Aegerter, M.A.: Sol-gel ZrO2 coatings for chemical protection of stainless steel. J. Sol-Gel Sci. Technol. 2, 529 1994CrossRefGoogle Scholar
15Stoch, A., Stoch, J.Rakowska, A.: An XPS and SEMS study of silica sol-gel/metal substrate interaction. Surf. Interface Anal. 22, 242 1994CrossRefGoogle Scholar
16Guglielmi, M., Licciulli, A.Mazzarelli, S.: Thick composite coatings via electrophoretic sol-gel processing. Cer. Acta 6(2–3), 19 1994Google Scholar
17Guglielmi, M.: Sol-gel coatings on metals. J. Sol-Gel Sci. Technol. 8, 443 1997CrossRefGoogle Scholar
18Murakami, M., Izumi, K., Deguchi, T., Morita, A., Tohge, N.Minami, T.: Silica coating from triethoxymethylsilane on stainless steel sheets. J. Ceram. Soc. Jpn. 97, 91 1989CrossRefGoogle Scholar
19Izumi, K., Tanaka, H., Uchida, Y., Tohge, N.Minami, T.: Influence of firing on adhesion of methyltrialkoxysilane-derived coatings on steel sheets. J. Non-Cryst. Solids 147–148, 483 1992CrossRefGoogle Scholar
20Amberg-Schwab, S., Katschorek, H., Weber, U., Hoffmann, M.Burger, A.: Barrier properties of inorganic-organic polymers: Influence of starting compounds, curing, conditions and storage-scaling-up to industrial application. J. Sol-Gel Sci. Technol. 19, 125 2000CrossRefGoogle Scholar
21Amberg-Schwab, S., Katschorek, H., Weber, U.Burger, A.: Inorganic-organic polymers as migration barriers against liquid and volatile compounds. J. Sol-Gel Sci. Technol. 26, 699 2003CrossRefGoogle Scholar
22Amberg-Schwab, S., Weber, U., Burger, A., Nique, S.Xalter, R.: Development of passive and active barrier coatings on basis of inorganic-organic polymers. Monatsh. Chem. 137, 657 2006CrossRefGoogle Scholar
23Brinker, J.Scherer, G.W.: The Physics and Chemistry of Sol-Gel Processing Academic Press Boston, San Diego New York 1990 108Google Scholar
24Bertoluzza, A., Fagnano, C., Morelli, M.A., Gottardi, V.Guglielmi, M.: Raman and infrared spectra on silica gel evolving toward glass. J. Non-Cryst. Solids 48, 117 1982CrossRefGoogle Scholar
25Jitianu, A., Britchi, A., Deleanu, C., Badescu, V.Zaharescu, M.: Comparative study of the sol-gel processes starting with different substituted Si-alkoxide. J. Non-Cryst. Solids 319, 263 2003CrossRefGoogle Scholar
26Chomel, A.D., Dempsey, P., Latournerie, J., Hourlier-Bahoul, D.Jayasooriya, U.A.: Gel to glass transformation of methyltriethoxysilane: A silicon oxycarbide glass precursor investigated using vibrational spectroscopy. Chem. Mater. 17, 4468 2005CrossRefGoogle Scholar
27Halls, M.D., Tripp, C.P.Schlegel, H.B.: Structure and infrared (IR) assignments for the OLED material: N,N-diphenyl-N,N-bis(1-naphthyl)-1,1-biphenyl-4,4-diamine (NPB). PCCP 3, 2131 2001CrossRefGoogle Scholar
28Rao, A.V., Kalesh, R.R.Pajonk, G.M.: Hydrophobicity and physical properties of TEOS based silica aerogels using phenyltriethoxysilane as a synthesis component. J. Mater. Sci. 38, 4407 2003CrossRefGoogle Scholar
29Siuzdak, D.A., Start, P.R.Mauritz, K.A.: Surlyn®/titanate hybrid materials via polymer in situ sol-gel chemistry. J. Polym. Sci., Part B: Polym. Phys. 41, 11 2003CrossRefGoogle Scholar
30Start, P.R.Mauritz, K.A.: Surlyn®/silicate nanocomposite materials via polymer in situ sol-gel process: Morphology. J. Polym. Sci. Part B: Polym. Phys. 41, 1563 2003CrossRefGoogle Scholar