Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2025-01-02T16:49:09.361Z Has data issue: false hasContentIssue false

Phase evolution in silver-doped BiPbSrCaCuO(2223)/Ag superconducting composites

Published online by Cambridge University Press:  03 March 2011

Y.C. Guo
Affiliation:
School of Materials Science and Engineering, The University of New South Wales, P.O. Box 1, Kensington, New South Wales 2033, Australia
H.K. Liu
Affiliation:
School of Materials Science and Engineering, The University of New South Wales, P.O. Box 1, Kensington, New South Wales 2033, Australia
S.X. Dou
Affiliation:
School of Materials Science and Engineering, The University of New South Wales, P.O. Box 1, Kensington, New South Wales 2033, Australia
Get access

Abstract

Silver doping into (Bi, Pb)2Sr2Ca2Cu3O10 superconducting composite tapes was found to accelerate the formation process of high-Tc (2223) phase owing to lowering the partial melting point of the samples. The differential thermal analysis (DTA) results showed that the partial melting temperature of the sample was lowered by about 10 °C from 850 °C to 840 °C by silver doping. However, with sufficient sintering both the silver-doped and undoped samples can reach a very high level of high-Tc phase fraction, suggesting that the silver doping only speeds up the rate of high-Tc phase formation, but does not change the final phase assemblage of the materials. The reaction kinetics was analyzed by using the Avrami equation, and the results indicated that the conversion process of low-Tc (2212) phase to high-Tc (2223) phase was a diffusion-controlled, two-dimensional reaction. The correlation of the phase evolution with electrical property inside the superconducting tape during the process of heat treatment was also discussed.

Type
Articles
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Sato, K., Shibuta, N., Mukai, H., Hikata, T., Ueyama, M., and Kato, T., J. Appl. Phys. 70, 6484 (1991).CrossRefGoogle Scholar
2Dou, S. X., Liu, H. K., and Guo, Y. C., Apply. Phys. Lett. 60, 2929 (1992).CrossRefGoogle Scholar
3Guo, Y. C., Liu, H. K., and Dou, S. X., Appl. Supercond. 1–2, 25 (1993).CrossRefGoogle Scholar
4Flukiger, R., Hensel, B., Jeremie, A., Decroux, M., Kupfer, H., Jahn, W., Seibt, E., Goldacker, W., Yamada, Y., and Xu, J. Q., Supercond. Sci. Technol. 5, S6168 (1992).CrossRefGoogle Scholar
5Oota, A., Horio, T., Ohba, K., and Iwasaki, K., J. Appl. Phys. 71, 5997 (1992).CrossRefGoogle Scholar
6Ren, Z. F. and Wang, J., J. Mater. Sci. Lett. 10, 1139 (1991).CrossRefGoogle Scholar
7Matsumoto, Y., Hombo, J., Yamaguchi, Y., and Mitsunaga, T., Mater. Res. Bull. XXIV, 1469 (1989).CrossRefGoogle Scholar
8Arendt, R. H., Garbauskas, M. F., Hall, E. L., Lay, K. W., and Tkaczyk, J. E., Physica C 194, 393 (1992).CrossRefGoogle Scholar
9Ishida, Y., Matsuzaki, J., Kizuka, T., and Ichinose, H., Physica C 190, 67 (1991).CrossRefGoogle Scholar
10Yamada, Y., Obst, B., and Flukiger, R., Supercond. Sci. Technol. 4, 165 (1991).CrossRefGoogle Scholar
11Dou, S. X., Song, K. H., Liu, H. K., Sorrell, C. C., Apperley, M. H., and Savvides, N., Appl. Phys. Lett. 56, 493 (1990).CrossRefGoogle Scholar
12Ohba, K., Horio, T., Iwasaki, K., and Oota, A., Supercond. Sci. Technol. 5, S312 (1992).CrossRefGoogle Scholar
13Huang, Y. T., Wang, W. N., Wu, S. F., Shei, C. Y., Hurng, W. M., Lee, W. H., and Wu, P. T., J. Am. Ceram. Soc. 73, 3507 (1990).CrossRefGoogle Scholar
14Aota, K., Hattori, H., Hatano, T., Nakamura, K., and Ogawa, K., Jpn. J. Appl. Phys. 28, L2196 (1989).CrossRefGoogle Scholar
15Oota, A., Ohba, K., Ishida, A., Kirihigashi, A., Iwasaki, K., and Kuwajima, H., Jpn. J. Appl. Phys. 28, L1171 (1989).CrossRefGoogle Scholar
16Oota, A., Ohba, K., Ishida, A., Noji, H., Kirihigashi, A., Iwasaki, K., and Kuwajima, H., Jpn. J. Appl. Phys. 29, L262 (1990).CrossRefGoogle Scholar
17Hatano, T., Aota, K., Hattori, H., Ikeda, S., Nakamura, K., and Ogawa, K., Cryogenics 30, 611 (1990).CrossRefGoogle Scholar
18Guo, Y. C., Liu, H. K., and Dou, S. X., unpublished research.Google Scholar
19Christian, J. W., The Theory of Transformations in Metals and Alloys (Pergamon Press, London, 1965), p. 487.Google Scholar
20Luo, J. S., Merchant, N., Maroni, V. A., Gruen, D. M., Tani, B. S., Carter, W. L., and Riley, G. N. Jr., Appl. Supercond. 1–2, 101 (1993).CrossRefGoogle Scholar
21Luo, J. S., Merchant, N., Maroni, V. A., Escorcia-Aparicio, E., Gruen, D. M., Tani, B. S., Riley, G. N. Jr., and Carter, W. L., The Proceedings of 1992 Applied Superconductivity Conference, Chicago, IL, August 23–28 (1992).Google Scholar
22Dou, S. X., Liu, H. K., Guo, Y. C., Shi, D. L., Sumption, M. D., and Collings, E. D., unpublished research.Google Scholar