Hostname: page-component-78c5997874-t5tsf Total loading time: 0 Render date: 2024-11-17T16:38:55.358Z Has data issue: false hasContentIssue false

Preparation and characterization of CuInS2 nanorods and nanotubes from an elemental solvothermal reaction

Published online by Cambridge University Press:  31 January 2011

Yang Jiang
Affiliation:
Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, People's Republic of China 230026
Yue Wu
Affiliation:
Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, People's Republic of China 230026
Shengwen Yuan
Affiliation:
Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, People's Republic of China 230026
Bo Xie
Affiliation:
Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, People's Republic of China 230026
Shuyuan Zhang
Affiliation:
Structure Research Laboratory, University of Science and Technology of China, Hefei, Anhui, People's Republic of China 230026
Yitai Qian*
Affiliation:
Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, People's Republic of China 230026 and Structure Research Laboratory, University of Science and Technology of China, Hefei, Anhui, People's Republic of China 230026
*
a)Address all correspondence to this author.
Get access

Abstract

A simple and convenient solvothermal reaction has been developed to produce CuInS2 nanorods and nanotubes from the elements in ethylenediamine at 280 °C. The products were characterized by x-ray diffraction, transmission electron microscopy, high-resolution transmission electron microscopy, scanning electron microscopy, and x-ray photoelectron spectroscopy. Analysis shows that the coordinating ability of ethylenediamine and the existence of liquid In may play important roles in the growth of one-dimension nanocrystallites and the electron-transfer reaction. In addition, spherical CuInS2 micrometer particles were obtained at 350 °C.

Type
Articles
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Senthil, K., Nataraj, D., Prabakar, K., Margalaraj, D., Narayandass, S.K., Vdhayakumar, N., and Krishrakumar, N., Mater. Chem. Phys. 58, 211 (1999).CrossRefGoogle Scholar
2Abrahams, S.C. and Bernstein, J.L.. J.Chem. Phys. 59, 1695 (1973).Google Scholar
3Schock, H.W., Sol. Energy Mater. Sol. Cells 22, 43 (1991).Google Scholar
4Li, B., Xie, Y., Huang, J., and Qian, Y., Adv. Mater. 11, 1456 (1999).3.0.CO;2-3>CrossRefGoogle Scholar
5Sun, Y., Kazmerski, L.L., Clark, A.H., Ireland, P.J., and Morton, D.W., J.Vac. Sci. Technol. 15, 265 (1978).CrossRefGoogle Scholar
6Shay, J.L. and Wernick, J., in Ternary Chalcopyrite Semiconductors: Growth, Electronics Properties and Applications (Pergamon Press, Oxford, U.K., 1975), p. 118.Google Scholar
7Kazmerski, L.L. and Sanborn, G.A., J. Appl. Phy. 48, 3178 (1975).CrossRefGoogle Scholar
8Kazmerski, L.L., Ayyagari, M.S., and Sanborn, G.A., J. Appl. Phys. 46, 4865 (1975).CrossRefGoogle Scholar
9Wu, L.L., Lin, H.Y., Sun, C.Y., Yang, M.H., and Hwang, H.L., Thin Solid Films 168, 113 (1989).CrossRefGoogle Scholar
10Onnagawa, H. and Miyashita, K., Jpn. J. Appl. Phys. 23, 965 (1984).CrossRefGoogle Scholar
11Alkerts, V., Schon, J.H., Witcomb, M.J., Bucher, E., Ruhle, U., and Schock, H.W., J. Phys. D.: Appl. Phys. 31, 2869 (1998).CrossRefGoogle Scholar
12Watanabe, T., Matsui, M., and Mori, K., Sol. Energy Mater. Sol. Cells. 35, 239 (1994).CrossRefGoogle Scholar
13Hodes, G., Engelhard, T., and Cahen, D., Thin Solid Films 128, 93 (1985).CrossRefGoogle Scholar
14Kondo, K-i., Nakamura, S., and Sato, K., Jpn. J. Appl. Phys. 37, 5728 (1988).CrossRefGoogle Scholar
15Nakabayashi, T., Miyazawa, T., Hashimoto, Y., and Ito, K., Tech. Dig. Int. PVSEC-9, Miyazaki, Japan (1996), p. 261.Google Scholar
16Dai, H.J., Wong, E.W., and Lieber, C.M., Science 272, 532 (1996).CrossRefGoogle Scholar
17Murray, C.B., Norris, D.J., and Bawendi, M.G., J. Am. Chem. Soc. 115, 8076 (1993).Google Scholar
18Brus, L., Appl. Phys. A 53, 465 (1991).CrossRefGoogle Scholar
19Hama, T., Ihara, T., and Sato, H., Sol. Energy Mater. 23, 380 (1991).CrossRefGoogle Scholar
20Jiang, T., Ozin, G.A., and Bedard, R.L., Adv. Mater. 10, 1479 (1998).Google Scholar
21Li, Y.D., Liao, H., Ding, Y., Fan, Y., Zhang, Y., and Qian, Y., Inorg. Chem. 38, 1382 (1999).CrossRefGoogle Scholar
22Trentle, T.J., Goel, S.C., Hickman, K.M., Viano, A.M., Chiary, M.Y., Beatly, A.M., Gibbons, P.C., and Buhro, W.E., J. Am. Chem. Soc. 119, 2172 (1997); T.J. Trentle, K.M. Hickman, S.C. Goel, A.M. Viano, P.C. , W.E. Buhro, Science 270, 1791 (1995) S.D. Dingman, N.P. Rath, P.D. Markowitz, P.C. Gibbons, and W.E. Buhro, Angew. Chem. Int. Ed. Engl. 39, 1470 (2000).CrossRefGoogle Scholar