Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-26T19:04:57.840Z Has data issue: false hasContentIssue false

The production of high performance YBa2Cu3O7 using nitrogen dioxide

Published online by Cambridge University Press:  31 January 2011

Kevin J. Leary
Affiliation:
Chemicals and Pigments Department, E.I. du Pont de Nemours & Co., Inc., Wilmington, Delaware 19880-0304
Howard W. Jacobson
Affiliation:
Chemicals and Pigments Department, E.I. du Pont de Nemours & Co., Inc., Wilmington, Delaware 19880-0304
Nancy F. Levoy
Affiliation:
Chemicals and Pigments Department, E.I. du Pont de Nemours & Co., Inc., Wilmington, Delaware 19880-0304
Richard A. Lapalomento
Affiliation:
Chemicals and Pigments Department, E.I. du Pont de Nemours & Co., Inc., Wilmington, Delaware 19880-0304
Thomas R. Askew
Affiliation:
Central Research and Development Department, E.I. du Pont de Nemours & Co., Inc., Wilmington, Delaware 19880-0304
Richard B. Flippen
Affiliation:
Central Research and Development Department, E.I. du Pont de Nemours & Co., Inc., Wilmington, Delaware 19880-0304
Steven W. Keller
Affiliation:
Department of Chemistry, University of California, Berkeley, and Materials and Chemical Sciences Division, Lawrence Berkeley Laboratory, Berkeley, California 94720
Angelica M. Stacy
Affiliation:
Department of Chemistry, University of California, Berkeley, and Materials and Chemical Sciences Division, Lawrence Berkeley Laboratory, Berkeley, California 94720
Get access

Abstract

Energy Dispersive X-ray Spectroscopy (EDS) was used to show that the elemental homogeneity of YBa2Cu3O7 powders can be improved substantially by heating the powder in a nitrogen dioxide-containing atmosphere (e.g., 950°C), followed by annealing in oxygen at 950°C, and slow-cooling to room temperature. The improved homogeneity results in a substantially larger flux exclusion signal for the NO2-treated powder, as measured by both ac and dc techniques. The experimental results suggest a mechanism which involves the formation of a small amount of molten Ba(NO3)2, which acts as a flux that dissolves the constituents and reprecipitates them as high purity YBa2Cu3O7.

Type
Articles
Copyright
Copyright © Materials Research Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Wu, M. K., Ashburn, J. R., Torng, C. J., Hor, P. G., Meng, R. L., Gao, L., Huang, Z. J., Wang, Y. Q. and Chu, C.W., Phys. Rev. Lett. 58, 908 (1987).CrossRefGoogle Scholar
2 Bordia, R. K., Horowitz, H. S., Subramanian, M. A., Michel, J. B., McCarron, E.M., III, Torardi, C.C., Bolt, J.D., Chowdry, U., Lopdrup, E. and Poon, S. J., Mater. Res. Soc. Symp. Proc. 99 (High-Temp. Supercond.), 245 (1988).CrossRefGoogle Scholar
3 Tarascon, J. M., Barboux, P., Greene, L. H., Bagley, B. G., Hull, G.W., LePage, Y. and McKinnon, W. R., Physica C (Amsterdam), 153155 (Pt. 1), 566 (1988).Google Scholar
4 Safari, A., Sundar, H.G.K., Rao, A.S., Wilson, C., Parkhe, V., Caracciolo, R., Wachtman, J. B., Jr. Jisrawi, N. and McLean, W. L., Proc. 38th Elect. Comp. Conf., IEEE, 181 (1988).Google Scholar
5 Moodenbaugh, A. R., Hurst, J. J., Jr. Jones, R. H. and Suenaga, M., Mater. Res. Soc. Symp. S Proc. (High-Temp. Supercond.), 101 (1987).Google Scholar
6 Toth, L. E., Osofsky, M.S., Lawrence, S.H., Gubser, D.U. and Wolf, S. A., U.S. Pat. Appl. US 158483 A0 (1988).Google Scholar
7 Hepp, A. F. and Gaier, J. R., Mater. Res. Bull. 23 (5), 693 (1988).CrossRefGoogle Scholar
8 Mehbod, M., Wyder, P., Duvigneaud, P. H., Naessens, G. and Deltour, R., Br. Ceram. Proc. 40 (Supercond. Ceram.), 175 (1988).Google Scholar
9 Motai, T. and Ichinose, N., Nippon Seramikkusu Kyokai Gakujutsu Ronbunshi 96 (4), 373 (1988).CrossRefGoogle Scholar
10 Conroy, L.W., Noerlund, C.A. and Boettiger, J., Acta Chem. Scand., Ser. A, A41 (9), 501 (1987).CrossRefGoogle Scholar
11 Kaplan, M.L. and Hauser, J.J., Mater. Res. Bull. 23 (2), 287 (1988).CrossRefGoogle Scholar
12 Hirabayashi, M., Nippon Kinzoku Gakkai Haiho 26 (10), 943 (1987).Google Scholar
13 Itoh, T. and Uchikawa, H., J. Mater. Sci. Lett. 7 (7), 693 (1988).CrossRefGoogle Scholar
14 Kayser, M. H., Borglum, B., Antony, G., Shyu, S.G. and Buchanan, R. C., Mater. Res. Soc. Symp. Proc. 99 (High-Temp. Super-cond.), 159 (1988).CrossRefGoogle Scholar
15 Tohge, N., Tatsumisago, M., Minami, T., Okuyama, K., Adachi, M. and Kousaka, Y., Jpn. J. Appl. Phys., Part 2, 27 (6), L1086 (1988).CrossRefGoogle Scholar
16 Hirano, S., Hayashi, T., Baney, R. H., Miura, M. and Tomonaga, H., Chem. Lett. 4, 665 (1988).CrossRefGoogle Scholar
17 Zhang, H., Chen, Y., Pan, G., Chen, Z., Qian, Y., Yang, Z., Xia, J., Sun, S. and Fang, M., Diwen Wuli Xuebao 10 (1), 4 (1988).Google Scholar
18 Oka, Y., Yamamoto, N., Tomii, Y., Kitaguchi, H., Takada, J., Osaka, A., Mimura, Y. and Kiyama, M., Funtai oyobi Funmatsu Yakin 34 (10), 590 (1987).Google Scholar
19 Panayappan, R., Guy, J.T., Jr. Binstead, R., Toyrneau, V. Le and Cooper, J. C., Phys. Rev. B: Condens. Matter 37 (7), 3727 (1988).CrossRefGoogle Scholar
20 Yamamoto, Y., Ueyama, T., Okazaki, K., Terui, G. and Niihara, K., Nippon Seramikkusu Kyokai Gakujutsu Ronbunshi 96 (4), 383 (1988).CrossRefGoogle Scholar
21 Blank, D.H.A., Kruidhof, H. and Flokstra, J., J. Phys. D: Appl. Phys. 21 (1), 226 (1988).CrossRefGoogle Scholar
22 Chu, T. C. and Dunn, B., J. Am. Ceram. Soc. 70 (12), C375 (1987).CrossRefGoogle Scholar
23 Koyanagi, A., Ohta, J., Koizumi, H. and Suzuki, T., Seisan Kenkyu 39 (11), 454 (1987).Google Scholar
24 Pebler, A. and Charles, R. G., Mater. Res. Bull. 23 (9), 1337 (1988).CrossRefGoogle Scholar
25 Voigt, J.A., Bunker, B.C., Doughty, D.H., Lamppa, D.L. and Kimball, K.M., Mater. Res. Soc. Symp. Proc. 99 (High-Temp. Supercond.), 635 (1988).CrossRefGoogle Scholar
26 Kodas, T.T., Engler, E. M., Lee, V.Y., Jacowitz, R., Baum, T. H., Roche, K., Parkin, S. S. P., Young, W. S., Hughes, S., Kleder, J. and Auser, W., Appl. Phys. Lett. 52 (19), 1622 (1988).CrossRefGoogle Scholar
27 Horowitz, H. S., McLain, S. J., Sleight, A.W., Druliner, J.D., Gai, P. L., VanKavelaar, M. J., Wagner, J. L., Biggs, B. D. and Poon, S. J., Science 243, 66 (1989).CrossRefGoogle Scholar
28 Kozuka, H., Umeda, T., Jin, J., Monde, T. and Sakka, S., Bull. Inst. Chem. Res., Kyoto Univ. 66 (2), 80 (1988).Google Scholar
29 Cima, M. J., Chiu, R. and Rhine, W. E., Mater. Res. Soc. Symp. Proc, 99 (High-Temp. Supercond.), 241 (1988).CrossRefGoogle Scholar
30 Chen, Z., Qian, Y., Wan, Y., Rong, J., Zhang, H., Pan, G., Zhao, Y. and Zhang, Q., Diwen Wuli Xuebao 10 (1), 8 (1988).Google Scholar
31 Marinenko, R. B., Newbury, D.E., Bright, D. S., Myklebust, R. L. and Blendell, J. E., in Microbeam Analysis, edited by New-bury, D. E. (San Francisco Press, San Francisco, CA., 1988), p. 37.Google Scholar
32 Flippen, R. B. and Askew, T. R., J. Appl. Phys. 64, 5908 (1988).CrossRefGoogle Scholar
33 Flippen, R. B. and Askew, T. R., Solid State Commun. 72 (4), 337 (1989).CrossRefGoogle Scholar