Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2024-12-28T02:49:09.690Z Has data issue: false hasContentIssue false

Pulsed laser deposition of thin superconducting films of Ho1Ba2Cu3O7x and Y1Ba2Cu3O7 − x

Published online by Cambridge University Press:  31 January 2011

D. B. Geohegan
Affiliation:
Solid State Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831-6056
D. N. Mashburn
Affiliation:
Solid State Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831-6056
R. J. Culbertson
Affiliation:
Solid State Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831-6056
S. J. Pennycook
Affiliation:
Solid State Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831-6056
J. D. Budai
Affiliation:
Solid State Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831-6056
R. E. Valiga
Affiliation:
Solid State Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831-6056
B. C. Sales
Affiliation:
Solid State Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831-6056
D. H. Lowndes
Affiliation:
Solid State Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831-6056
L. A. Boatner
Affiliation:
Solid State Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831-6056
E. Sonder
Affiliation:
Solid State Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831-6056
D. Eres
Affiliation:
Solid State Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831-6056
D. K. Christen
Affiliation:
Solid State Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831-6056
W. H. Christie
Affiliation:
Solid State Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831-6056
Get access

Abstract

Thin films of Ho1Ba2Cu3O7 − x and Y1Ba2Cu3O7 − x were deposited on SrTiO3 and Al2O3, substrates by pulsed laser deposition of high-Tc bulk superconductor pellets in vacuum. Following annealing in O2 at 800–900 °C the films were superconducting with typical Tc (50%) = 89 K and transition widths of 10 K. Rutherford backscattering spectrometry (RBS) and secondary ion mass spectrometry (SIMS) were utilized to study the stoichiometry of the as-deposited films for laser energy, densities between 0.11 and 4.5 J cm−2. The films were deficient in holmium and yttrium for energy densities below 0.6 and 0.4 J cm −2, respectively. The films were stoichiometric for fluences above 0.6 J cm−2. In addition, preliminary time dependence and spectroscopic observations of the laser-produced plasma are presented. The results indicate an ablation mechanism that at high energy densities preserves stoichiometry. TEM and x-ray characterization of annealed, superconducting Ho1Ba2Cu3O7 − x films on (100) SrTiO3 showed mixed regions of epitaxially oriented 1:2:3 material with either the c axis or a axis oriented along the surface normal. The a-axis-oriented material grew preferentially in the films with b, c, twinning.

Type
Articles
Copyright
Copyright © Materials Research Society 1988

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Ready, J. F., Appl. Phys. Lett. 3, 11 (1963).CrossRefGoogle Scholar
2Ready, J. F., Effects of High Power Laser Radiation (Academic, New York, 1971).Google Scholar
3Schwarz, H. and Tourtellotte, H. A., J. Vac. Sci. Technol. 6, 373 (1969).CrossRefGoogle Scholar
4Hanabusa, M., Suzuki, M., and Nishigaki, S., Appl. Phys. Lett. 38, 385 (1981).CrossRefGoogle Scholar
5Smith, H. M. and Turner, A. F., Appl. Opt. 4, 147 (1965).CrossRefGoogle Scholar
6Zavitsanos, P. D. and Saver, W. E., J. Electrochem. Soc. 115, 109 (1968).CrossRefGoogle Scholar
7Hass, G. and Ramsey, J. B., Appl. Opt. 8, 1115 (1969).Google Scholar
8Ban, V. S. and Kramer, D. A., J. Mater. Sci. 5, 978 (1970).Google Scholar
9Cheung, J. T., Appl. Phys. Lett. 43, 255 (1983).CrossRefGoogle Scholar
10Lubben, D., Barnett, S. A., Suzuki, K., Gorbatkin, S., and Greene, J. E., J. Vac. Sci. Technol. B 3, 986 (1985).Google Scholar
11Dimitrov, D., Metev, S., Gugov, I., and Kozhukharov, V., J. Mater. Sci. Lett. 1, 334 (1982).CrossRefGoogle Scholar
12Sankur, H., Mat. Res. Soc. Symp. Proc. 29, 373 (1984).Google Scholar
13Gaponov, S. V., Luskin, B. M., Nesterov, B. A., and Salaschenko, N. N., Sov. Phys.-Solid State 19, 1736 (1978).Google Scholar
14Dubowski, J. J., Williams, D. F., Sewell, P. B., and Norman, P., Appl. Phys. Lett. 46, 1081 (1985).CrossRefGoogle Scholar
15Ong, N. P., Kote, G., and Cheung, J. T., Phys. Rev. B 28, 2289 (1983).Google Scholar
16Gaponov, S. V., Luskin, B. M., and Saloschenko, N. N., Solid State Commun. 39, 301 (1981).CrossRefGoogle Scholar
17Dijkamp, D., Venkatesan, T., Wu, X. D., Shaheen, S. A., Jisrawi, N., Min-Lee, Y. H., McLean, W. L., and Croft, M., Appl. Phys. Lett. 51, 619 (1987).Google Scholar
18Mashburn, D. N., Geohegan, D. B., Eres, D., Lowndes, D. H., Boatner, L. A., Sales, B. C., Pennycook, S. J., Culbertson, R. J., Sonder, E., and Christen, D. K., Mat. Res. Soc. Symp. Proc. 99, 699 (1988).CrossRefGoogle Scholar
19Lynds, L., Weinberger, B. R., Peterson, G. G., Krasinski, H. A., Mater. Res. Soc. Symp. Proc. 99, 707 (1988).CrossRefGoogle Scholar
20Kwok, H. S., Mattocks, P., Shaw, D. T., Shi, L., Wang, X. W., Witanuchi, S., Ying, Q. Y., Sheng, J. P. and Bush, P., Mat. Res. Soc. Symp. Proc. 99, 735 (1988).CrossRefGoogle Scholar
21Moorjani, K., Bohandy, J., Adrian, F. J., Kim, B. F., Shull, R. D., Chiang, C. K., Swartzendruber, L. J., and Bennett, L. H., Phys. Rev. B 36, 4036 (1987).Google Scholar
22Narayan, J., Biunno, N., Singh, R., Holland, O. W., and Auciello, O., Appl. Phys. Lett. 51, 1845 (1987).Google Scholar
21Venkatesan, T., Wu, X. D., Inam, A., and Wachtman, J. B., Appl. Phys. Lett. 52, 1193 (1988).Google Scholar
24For a photograph of the irradiated pellet and the resulting plume see MRS Bull. XIII, 3 (March 1988) cover photograph.Google Scholar
25Bhat, P. K., Dubowski, J. J., and Williams, D. F., Phys. Status Solidi A 96, K9 (1986).CrossRefGoogle Scholar
26Dyer, P. E., Jenkins, S. D., and Sidhu, J., Appl. Phys. Lett. 49, 453 (1986).Google Scholar
27Auciello, O., Krauss, A. R., Santiago-Aviles, J., Schreiner, A. F., and Gruen, D. M., Appl. Phys. Lett. 52, 239 (1988).Google Scholar
28Inam, A., Wu, X. D., Venkatesan, T., Ogale, S. B., Chang, C. C., and Dijkamp, D., Appl. Phys. Lett. 51, 1112 (1987).CrossRefGoogle Scholar
29Samsonbv, G. V., Ed., The Oxide Handbook (IFI/Plenum, New York, 1982), 2nd ed.Google Scholar
30Tachikawa, K., Watanabe, I., Kosuge, S., and Ono, D. M., Mat. Res. Soc. Symp. Proc. 99, 723 (1988).Google Scholar
31Nemchinov, I. V. and Popov, S. P., JETP Lett. 11, 312 (1970).Google Scholar
32Brost, G. A., Bohn, C. L., Crawford, M. L. and Mullins, B. W., Mat. Res. Soc. Symp. Proc. 74, 217 (1987).CrossRefGoogle Scholar
33Lynds, L. and Woody, B. A., Electron. Spectrosc. Relat. Phenom. 29, 147 (1983).Google Scholar
34Utterback, N. G., Tang, S. P., and Friichteniicht, J. F., Phys. Fluids 19, 900 (1976).Google Scholar
35Hansen, S. G. and Robitaille, T. E., Appl. Phys. Lett. 50, 359 (1987).CrossRefGoogle Scholar
36Venketesan, T., Wu, X. D., Inam, A., and Wachtman, J. B., Appl. Phys. Lett. 52, 1193 (1988).Google Scholar
37Sales, B. C., Kim, Y. C., Thompson, J. R., Christen, D. K., Boatner, L. A. and Sekula, S. T., Mat. Res. Soc. Symp. Proc. 99, 591 (1988).Google Scholar
38Sales, B. C. (unpublished data).Google Scholar
39Specht, E. D., Sparks, C. J., Dhere, A. G., Brynestad, J., Cavin, O. B., and Kroeger, D. M., submitted to Phys. Rev. B.Google Scholar
40Venkatesan, T., Chase, E. W., Wu, X. D., Inam, A., Chang, C. C., and Shokoohi, F. K., submitted to Appl. Phys. Lett.Google Scholar
41DeSantolo, A. M., Mandich, M. L., Sunshine, S., Davidson, B. A., Fleming, R. M., Marsh, P., and Kometani, T. Y., Appl. Phys. Lett. 52, 1995 (1988).Google Scholar
42Auciello, O., Athavale, S., Hankins, O. E., Sito, M., Schreiner, A. F., and Biunno, N., Appl. Phys. Lett. 53, 72 (1988).Google Scholar