Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2024-12-23T17:13:18.474Z Has data issue: false hasContentIssue false

Raman microscopy examination of phase evolution in Bi(Pb)–Sr–Ca–Cu–O superconducting ceramics

Published online by Cambridge University Press:  31 January 2011

K. T. Wu
Affiliation:
Argonne National Laboratory, 9700 South Cass Avenue, Argonne, Illinois 60439
A. K. Fischer
Affiliation:
Argonne National Laboratory, 9700 South Cass Avenue, Argonne, Illinois 60439
V. A. Maroni*
Affiliation:
Argonne National Laboratory, 9700 South Cass Avenue, Argonne, Illinois 60439
M. W. Rupich
Affiliation:
American Superconductor Corporation, Two Technology Drive, Westborough, Massachusetts 01581
*
b)Author to whom correspondence should be addressed.
Get access

Abstract

Raman microspectroscopy (RMS) and imaging Raman microscopy (IRM) were used to probe the composition and spatial distribution of chemical phases in Bi(Pb)–Sr–Ca–Cu–O (BSCCO) ceramic superconductor powders and silver-BSCCO composites. The Raman techniques were used to identify various phases, including alkaline earth cuprates, CuO, Bi-2212, Bi-2223, and Pb-containing phases. Changes in the Ca/Sr ratios in (Ca, Sr)2CuO3 phases were distinguished by differences in orientation with respect to polarization of the exciting radiation. Variations were observed in the content and distribution of lead in various phases formed during intermediate stages of the thermal processing of composite conductors. The spatial distribution of the various phases detected in powder and composite conductors was established to a resolution of a few microns by collecting images of the Raman scattering at wavelengths corresponding to the signature peaks of the observed phases. Reference Raman spectra of the major phases observed in the BSCCO system are also reported. The Raman techniques, when combined with complementary techniques, such as x-ray diffraction and electron microscopy, can provide valuable information about the reaction paths and mechanisms of the high temperature BSCCO superconducting ceramics.

Type
Articles
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Li, Q., Fleshler, S., Walsh, P. J., Rupich, M. W., Carter, W. L., Podtburg, E. R., and Riley, G. N., Jc Performance of Ag-Sheathed Bi-2223 HTS Composite Conductors (ICMC, Cincinnati, OH, 1995); Q. Li, K. Brodersen, H. A. Hjuler, and T. Freltoft, Physica C 217, 360 (1993).Google Scholar
2.Rupich, M. W., Riley, G. N. Jr, Carter, W. L., Miles, P. K., Gannon, J. J., Jr., Li, O., Parker, D. R., Christopherson, C., and Masur, L. J., Appl. Supercond. 3, 1 (1995).CrossRefGoogle Scholar
3.Yamasaki, H., Endo, K., Kosaka, S., Misawa, M., Yoshida, S., and Kajimura, K., IEEE Trans. Appl. Supercond. 3, 1536 (1993).CrossRefGoogle Scholar
4.Beales, T. P., Friend, C. M., LeLay, L., Mölgg, M., Dineen, C., Jacobson, D. M., Hall, S. R., Harrison, M. R., Hermann, P. F., Petitbon, A., Caracino, P., Gherardi, L., Metra, P., Bogner, G., and Neumüller, H-W., Supercond. Sci. Technol. 8, 909 (1995).CrossRefGoogle Scholar
5.Sandhage, K., Riley, G. N., Jr., and Carter, W. L., J. Metals 43, 21 (1991).Google Scholar
6.Morgan, P. E. D., Piché, J. D., and Housley, R. M., Physica C 191, 179 (1992).CrossRefGoogle Scholar
7.Luo, J. S., Merchant, N., Maroni, V. A., Gruen, D. M., Tani, B. S., Carter, W. L., and Riley, G. N., Jr., Appl. Supercond. 1, 101 (1993).CrossRefGoogle Scholar
8.Luo, J. S., Merchant, N., Maroni, V. A., Riley, G. N., Jr., and Carter, W. L., Appl. Phys. Lett. 63, 690 (1993).CrossRefGoogle Scholar
9.Grivel, J-C., Jeremie, A., Hensel, B., and Flükiger, R., Supercond. Sci. Technol. 6, 725 (1993); A. Jeremie, K. Alami-Yadri, J-C. Grivel, and R. Flükiger, Supercond. Sci. Technol. 6, 730 (1993).CrossRefGoogle Scholar
10.Jeremie, A., Grivel, J-C., and Flükiger, R., Physica C 235–240, 943 (1994); A. Jeremie and R. Flükiger, Physica C 267, 10 (1996).CrossRefGoogle Scholar
11.Majewski, P., Kaesche, S., Su, H-L., and Aldinger, F., Physica C 221, 295 (1994).CrossRefGoogle Scholar
12.Dorris, S. E., Prorok, B. C., Lanagan, M. T., Browning, N. B., Hagen, M. R., Parnell, J. A., Feng, Y., Umezawa, A., and Larbalestier, D. C., Physica C 223, 163 (1994); S. E. Dorris, B. C. Prorok, M. T. Lanagan, S. Sinha, and R. B. Poeppel, Physica C 212, 66 (1993).CrossRefGoogle Scholar
13.Oh, S. S. and Osamura, K., Supercond. Sci. Technol. 4, 239 (1991).CrossRefGoogle Scholar
14.Su, S. R., O'Conner, M., and Rossoni, P. G., Physica C 198, 95 (1992).CrossRefGoogle Scholar
15.Smith, M. G., Phillips, D. S., Peterson, D. E., and Willis, J. O., Physica C 224, 168 (1994).CrossRefGoogle Scholar
16.Riley, G. N., Jr., Carter, W. L., and Sandhage, K. H., Proceedings of the International Workshop on Superconductivity (co-sponsored by ISTEC and MRS), June 23–26, 1992, Honolulu, Hawaii, p. 216.Google Scholar
17.Dou, S. X., Liu, H. K., Zhang, Y. L., and Blant, W. M., Supercond. Sci. Technol. 4, 203 (1991).CrossRefGoogle Scholar
18.Grivel, J-C., Jeremie, A., Hensel, B., and Flükiger, R., Proc. ICMAS-93, Paris, 1993, edited by Etourneau, J. E., Torrence, J. B., and Yamauchi, H. (I.I.T.T., 1983), p. 359.Google Scholar
19.Kusano, Y., Nanba, T., Takada, J., Ikeda, Y., and Takano, M., Physica C 235–240, 447 (1994).Google Scholar
20.Yoshida, K., Sano, Y., and Tomii, Y., Supercond. Sci. Technol. 8, 329 (1995).CrossRefGoogle Scholar
21.Götz, D., Hadam, B., Idink, H., Th. Hahn, Göbbels, M., and Woermann, E., Physica C 242, 291 (1995).CrossRefGoogle Scholar
22.High, Y. E., Feng, Y., Sung, Y. S., Hellstrom, E. E., and Larbalestier, D. C., Physica C 220, 81 (1994).CrossRefGoogle Scholar
23.Luo, J. S., Merchant, N., Escorcia-Aparicio, E. J., Maroni, V. A., Tani, B. S., Carter, W. L., and Riley, G. N., Jr., J. Mater. Res. 9, 3059 (1994).CrossRefGoogle Scholar
24.Eibl, O., Supercond. Sci. Technol. 8, 833 (1995).CrossRefGoogle Scholar
25.Sung, Y. S. and Hellstrom, E. E., Physica C 252, 155 (1995); ibid., Physica C 252, 79 (1995).CrossRefGoogle Scholar
26.Luo, J. S., Merchant, N., Maroni, V. A., Dorris, S. E., Lanagan, M. T., and Tani, B. S., J. Am. Ceram. Soc. 78, 2785 (1995).CrossRefGoogle Scholar
27.Williams, K. P. J., Pitt, G. D., Smith, B. J. E., Whitley, A., Batchelder, D. N., and Hayward, I. P., J. Raman Spectrosc. 25, 131 (1994).CrossRefGoogle Scholar
28.Williams, K. P. J., Wilcock, I. C., Hayward, I. P., and Whitley, A., Spectroscopy 11 (3), 45 (1996).Google Scholar
29.Barbillat, J., Dhamelincourt, P., Delhaye, M., and Silva, E. Da, J. Raman Spectrosc. 25, 3 (1994).CrossRefGoogle Scholar
30.Wang, P. D., Cheng, C., Torres, C. M. Sotomayor, and Batchelder, D. N., J. Appl. Phys. 74, 5907 (1993).CrossRefGoogle Scholar
31.Black, L., Allen, G. C., and Frost, P.C, Appl. Spectrosc. 49, 1299 (1995).CrossRefGoogle Scholar
32.Uzumaki, T., Yamanaka, K., Kamehara, N., and Niwa, K., Jpn. J. Appl. Phys. 28, L75 (1989).CrossRefGoogle Scholar
33.Gould, E. S., Inorganic Reactions and Structures, revised edition (Holt, Rinehart, and Winston, New York, 1962), p. 273.Google Scholar
34.Kitaguchi, H., Takada, J., Oda, K., and Miura, Y., J. Mater. Res. 5, 1397 (1990).CrossRefGoogle Scholar
35.Mayer, S. T. and Muller, R., J. Electrochem. Soc. 139, 426 (1992).CrossRefGoogle Scholar
36.Goldstein, H. F., Kim, D., Yu, P. Y., Bourne, L. C., Chaminade, J-P., and Nganga, L., Phys. Rev. B 41, 7192 (1990).CrossRefGoogle Scholar
37.Faulques, E., Dupouy, P., and Nguyen, T. P., Physica C 162–164, 1101 (1989).CrossRefGoogle Scholar
38.Zhiqiang, M., Hongguang, Z., Mingliang, T., Sun, T., Yang, X., Yu, W., Jian, Z., Chunyi, X., and Yuheng, Z., Phys. Rev. B 48, 16 135 (1993); K. C. Hewitt, A. Martin, Y. Shi, and M. J. G. Lee, Physica C 216, 463 (1993).CrossRefGoogle Scholar
39.Lee, H. K., Park, K., and Ha, D. H., J. Appl. Phys. 70, 2764 (1991).CrossRefGoogle Scholar
40.Liarokapis, E., Leventouri, Th., Papageorgiou, O., Lu, H., and Medina, F. D., Modern Phys. Lett. B 5, 1751 (1991).CrossRefGoogle Scholar
41.Garcia, C. M., Valdes, E. D., Malagon, G. P., Puente, G. C., Lopez, J. O., Falcony, C., and Gallardo, A. C., J. Supercond. 8, 125 (1995).CrossRefGoogle Scholar
42.Boekholt, M., Götz, D., Idink, H., Fleuster, M., Hahn, T., Woermann, E., and Güntherodt, G., Physica C 185–189, 789 (1991).CrossRefGoogle Scholar
43.Hangyo, M., Nagasaki, N., Nakashima, S., Matsubara, I., and Yamashita, H., Solid State Commun. 77, 713 (1991).CrossRefGoogle Scholar