Hostname: page-component-7479d7b7d-q6k6v Total loading time: 0 Render date: 2024-07-11T06:24:15.208Z Has data issue: false hasContentIssue false

Selective synthesis of nanosized TiO2 by hydrothermal route: Characterization, structure property relation, and photochemical application

Published online by Cambridge University Press:  03 March 2011

K. Madhusudan Reddy
Affiliation:
Nanomaterials Laboratory, Indian Institute of Chemical Technology, Hyderabad 500007, India
Debanjan Guin
Affiliation:
Nanomaterials Laboratory, Indian Institute of Chemical Technology, Hyderabad 500007, India
Sunkara V. Manorama*
Affiliation:
Nanomaterials Laboratory, Indian Institute of Chemical Technology, Hyderabad 500007, India
A. Ramachandra Reddy
Affiliation:
Department of Physics, National Institute of Technology, Warangal, Andhrapradesh 506004, India
*
a) Address all correspondence to this author.e-mail: manorama@iict.res.in
Get access

Abstract

By variation of reaction temperature and time during the hydrothermal synthesis process, TiO2 nanoparticles in anatase, rutile, and mixture of rutile-anatase phases are formed without adding any mineralizer. Differential thermal analysis studies indicate the rutile phase crystallization at a comparatively lower temperature and a low weight loss. The material synthesized by hydrothermal reaction required no post-calcination for the crystallization. Transmission electron microscopy, selected-area diffraction, Brunauer–Emmett–Teller, and x-ray diffreaction studies confirmed the compositions to be anatase and rutile with the particle size ranging from 5 to 25 nm with surface area as high as 260 m2/g for the anatase and 65 m2/g for rutile. The prepared nanoparticles exhibited a blue shift of the absorption edge in the ultraviolet-visible spectrum greater than 10 nm. The particles with average size around 5 nm showed two band edges in the absorption spectra attributed to two different particle sizes. Simple photocatalytic reactions were tried to demonstrate the photochemical activity of the synthesized material. The synthesized nanoparticles exhibited an ultraviolet radiation simultaneous photoreduction of Cr(VI) to Cr(III) and oxidation of formic acid into carbon dioxide and water.

Type
Articles
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.O’Regan, B. andGrätzel, M.: A low-cost, high efficiency solar cell based upon dye-sensitized colloidal TiO2 films. Nature 353, 737 (1991).Google Scholar
2.Perkins, C.L. andHenderson, M.A.: Photodesorption and trapping of molecular oxygen at the TiO2(110)-water ice interface. J. Phys. Chem. B 105, 3856 (2001).CrossRefGoogle Scholar
3.Yen, Y.C., Tseug, T.T. andChang, D.A.: Electrical properties of porous titania ceramic humidity sensor. J. Am. Ceram. Soc. 72, 1472 (1989).Google Scholar
4.Matsumoto, T., Murakami, Y. and Takasu, Y.: Photochromism of titanium oxide gels prepared by the salt-catalytic sol-gel process. Chem. Lett. 49, 348 (2000).Google Scholar
5.Asahi, R., Morikawa, T., Ohwaki, T., Aoki, K. andTaga, Y.: Visible light photocatalysis in nitrogen doped titanium oxides. Science 293, 269 (2001).Google Scholar
6.Chemseddine, A. andBoehm, H.P.: A study of the primary step in the photochemical degradation of acetic acid and chloroacetic acids on a TiO2 photocatalyst. J. Mol. Catal. 60, 295 (1990).Google Scholar
7.Ovenstone, J. andYanagisawa, K.: Hydrothermal synthesis and characterization of strontium doped lanthanum manganite perovskite powders for use as a cathode material in SOFCs. Chem. Mater. 11, 2770 (1999).CrossRefGoogle Scholar
8.Thiele, E.S. andFrench, R.H.: Light scattering properties of representative, morphological rutile titania nanoparticles using a finite element method. J. Am. Ceram. Soc 81[3], 469 (1998).Google Scholar
9.Patton, T.C.Pigment Handbook (Wiley, New York, 1973).Google Scholar
10.Aruna, S.T., Tirosh, S. andZaban, A.J.: Nanosize rutile particle synthesis via hydrothermal method without mineralizers. J. Mater. Chem. 10, 2388 (2000).CrossRefGoogle Scholar
11.Edelson, L.H. andGlaeser, A.M.: Role of particle substructure in the sintering of monosized titania. J. Am. Ceram. Soc. 71[4], 225 (1988).Google Scholar
12.Chemseddine, A. and Mritz, T.: Nanostructuring titania: Control over nanocrystal structure, size, shape, and organization. Eur. J. Inorg. Chem. 2, 235 (1999).Google Scholar
13.Zhang, D., Gao, L. andGuo, J.: Effects of calcination on the photocatalytic properties of nanosized TiO2 powders prepared by TiCl4 hydrolysis. Applied Catal., B: Gen 26, 207 (2000).Google Scholar
14.Cheng, H., Ma, J., Zhao, Z. andQi, L.: Hydrothermal preparation of uniform nanosized rutile and anatase particles. Chem. Mater. 7, 663 (1995).CrossRefGoogle Scholar
15.Wang, C.C. andYing, J.Y.: Sol-gel synthesis and hydrothermal processing of anatase and rutile titania nanocrystals. Chem. Mater. 11, 3113 (1999).Google Scholar
16.Yin, H., Wada, Y., Kitamura, T., Kambe, S., Murasawa, S., Mori, H., Sakata, T. andYanagida, S.: Hydrothermal synthesis of nanosized anatase and rutile TiO2 using amorphous phase TiO2. J. Mater. Chem. 11, 1694 (2001).Google Scholar
17.Kominami, H., Kato, J., Murakami, S., Kera, Y., Inoue, M. andOhtani, B.: Synthesis of titanium(IV) oxide of ultra-high photocatalytic activity: High-temperature hydrolysis of titanium alkoxides with water liberated homogeneously from solvent alcohols. J. Mol. Catal. A 144, 165 (1999).CrossRefGoogle Scholar
18.Cavani, F., Foresti, E., Parrinello, F. andTriro, F.: Role of the chemistry of solutions of titanium ions in determining the structure of V/Ti/O catalysts. Appl. Catal. 38, 311 (1998).CrossRefGoogle Scholar
19.Henry, M., Jolivet, J.P. andLivage, J. In Aqueous Chemistry of Metal Cations, Hydrolysis, Condensation and Complexation, edited by Reisfeld, R. and Jorgensen, C.K. (Springer-Verlag, Berlin, Germany, 1992), p. 155.Google Scholar
20.Bekkerman, L.I., Dobrovolskii, I.P. andIvakin, A.: Effect of the composition of Ti(IV) solutions and precipitation conditions on the structure of the solid phase. Russ. J. Inorg. Chem 21, 233 (1976).Google Scholar
21.Livage, J., Henry, M. andSanchez, C.: Sol-gel chemistry of transition metal oxides. Prog. Solid State Chem. 18, 259 (1988).Google Scholar
22.Klug, H.P. andAlexander, L.E. In X-ray Diffraction Procedures (Wiley-Interscience, ;New York, 1974), p. 364.Google Scholar
23.Spurr, R.A. andMyers, H.: Quantity analysis of anatase-rutile mixture with an x-ray diffractomter. Anal. Chem. 29, 760 (1957).Google Scholar
24.Park, N.G., Schlichthorl, G., van Lagemaat, J. de, Cheong, H.M., Mascarenhas, A. andFrank, A.J.: Dye sensitized TiO2 solar cells: Structural and photochemical characterization of nanocrystalline electrodes formed from hydrolysis of TiCl4. J. Phys. Chem. 103, 3308 (1999).CrossRefGoogle Scholar
25.Nilsson, T.M.J. andNiklasson, G.A.: Condensation of H2O by radiative cooling. Sol. Energy Mater. Sol. Cells 37, 93 (1995).Google Scholar
26.Granqvist, C. andEviksson, T. in Materials for Radiative Cooling to Low Temperatures, edited by Granqvist, C. (Pergamon Press, Oxford, U.K., 1991), p. 168.Google Scholar
27.Kumar, K.N.P., Keizer, K., Burggraaf, A.J., Okubo, T. andNagamoto, H.: Synthesis and textural properties of unsupported and supported rutile (TiO2) membranes. J. Mater. Chem. 3, 923 (1993).Google Scholar
28.Ardizzone, S., Bianchi, C.L. andVercelli, B.: Structural and morphological features of MgO powders: The key role of the preparative starting compound. J. Mater. Res. 13, 2218 (1998).CrossRefGoogle Scholar
29.Tsunekawa, S., Fukuda, T. andKasuya, A.: Blue shift in ultraviolet absorption spectra of monodisperse CeO2–x nanoparticles. J. Appl. Phys. 87, 1318 (2000).Google Scholar
30.Reddy, K. Madhusudan, Manorama, S.V. andReddy, A. Ramachandra: Bandgap studies on anatase titanium dioxide nanoparticles. Mater. Chem. Phys. 78, 239 (2002).Google Scholar
31.Zhang, Y.W., Si, R., Liao, C.S., Yan, C.H., Xian, C.X. andKou, Y.: Facile alcohothermal synthesis, size-dependent ultraviolet absorption and enhanced CO conversion activity of ceria nanocrystals. J. Phys. Chem. B 107, 10159 (2003).CrossRefGoogle Scholar
32.Yuhong, Z., Ming, W., Gouxing, X. andWeishen, Y.: Preparation and spectroscopic characterization of quantum size titanium dioixde. Chin. J. Internet 2, 17 (2000).Google Scholar
33.Ullrich, B., Bagnall, D.M., Sakai, H. andSegawa, Y.: Photoluminescence properties of thin CdS films on glass formed by laser ablation. Solid State Commun. 109, 757 (1999).CrossRefGoogle Scholar
34.Hirano, M., Nakahara, C., Tanaike, O. andIngaki, M.: Photoactivity and phase stability of ZrO2-doped anatase-type TiO2 directly formed as nanometer-sized particles by hydrolysis under hydrothermal conditions. J. Solid State Chem. 170, 39 (2003).Google Scholar
35.Ovenstone, J.: Preparation of novel titania photocatalysts with high activity. J. Mater. Sci. 36, 1325 (2001).Google Scholar
36.Inagaki, M., Nakazawa, Y., Hirano, M., Kobayashi, Y. andToyoda, M.: Preparation of stable anatase-type TiO2 and its photocatalytic performance. Int. J. Inorg. Mater. 3, 809 (2001).Google Scholar
37.Kominami, H., Ishii, Y., Kohno, M., Konishi, S., Kera, Y. andOhtani, B.: Nanocrystalline brookite-type titanium(IV) oxide photocatalysts prepared by a solvothermal method: Correlation between their physical properties and photocatalytic activities. Catal. Lett. 91, 41 (2003).Google Scholar
38.Tan, T.T.Y., Beydoun, D. andAmal, R.: Photocatalytic reduction of Se(VI) in aqueous solutions in TiO2 system:kinetic modelling and reaction mechanism. J. Phys. Chem. B 107,4296 (2003).Google Scholar
39.Chang, R.Chemistry, 5th ed. (McGraw-Hill, New York, 1994).Google Scholar