Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-22T17:23:23.888Z Has data issue: false hasContentIssue false

Shear deformation in TiAl: Atomic dynamic and static simulations

Published online by Cambridge University Press:  31 January 2011

Y.L. Liu*
Affiliation:
Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, People’s Republic of China; and Graduate University of Chinese Academy of Sciences, Beijing 100049, People’s Republic of China
S.Q. Wang
Affiliation:
Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, People’s Republic of China
H.Q. Ye
Affiliation:
Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, People’s Republic of China; and Electron Microscope Lab, Peking University, Beijing 100871, People’s Republic of China
*
a)Address all correspondence to this author. e-mail: yongliliu@imr.ac.cn
Get access

Abstract

The dynamic shear deformation process and the related stacking fault transitions in TiAl have been systematically investigated using both the molecular dynamics and ab initio methods. The details of the dislocation initiation and microstructural evolution are presented, and the concomitant potential energy variation and the radial distribution functions have been analyzed. The results show, interestingly, that some deformation-induced hexagonal close-packed (hcp) structures are metastable, and that a higher velocity field promotes more hcp segments. The phenomena are interpreted based on ab initio calculations of the detailed energy variation at the different fault transition stages, i.e., superlattice intrinsic stacking fault (SISF) → TWIN, SISF → hcp, and hcp → TWIN. The intrinsic factor that governs the deformation process is discussed. The results promote new understanding of the stress-induced interfaces and dislocation behaviors in experimental observations.

Type
Articles
Copyright
Copyright © Materials Research Society2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Lipsitt, H.A., Shechtman, D.Schafrik, R.: The deformation and fracture of TiAl at elevated temperatures. Metall. Trans. A 6, 1991 1975Google Scholar
2Sastry, A.M.L.Lipsitt, H.A.: Fatigue deformation of TiAl base alloys. Metall. Trans. A 8, 299 1997Google Scholar
3Appel, F.Wagner, R.: Microstructure and deformation of two-phase γ-titanium aluminides Mater. Sci. Eng., R 22, 187 1998CrossRefGoogle Scholar
4Singh, S.R.Howe, J.M.: Studies on the deformation behavior of interfaces in (γ+α2) titanium aluminide by high-resolution transmission electron microscopy. Philos. Mag. Lett. 65, 233 1992Google Scholar
5Gao, Y.Zhu, J.: Stress-induced phase transformation in two-phase TiAl. Intermetallic alloys. Scripta Metall. 28, 651 1993CrossRefGoogle Scholar
6Zhang, Y.G.Chaturvedi, M.C.: The effect of Widmanstätten-type α2precipitates on room temperature deformation and fracture behaviour of a γ–TiAl-based alloy. Mater. Sci. Eng., A 174, 45 1994Google Scholar
7Yang, S.J.Nam, S.W.: Investigation of α2/γ phase transformation mechanism under the interaction of dislocation with lamellar interface in primary creep of lamellar TiAl alloys. Mater. Sci. Eng., A 329/331, 898 2002CrossRefGoogle Scholar
8Klassen, T., Oehring, M.Bormann, R.: Microscopic mechanisms of metastable phase formation during ball milling of intermetallic TiAl phases. Acta Mater. 45, 3935 1997CrossRefGoogle Scholar
9Korznikov, C.V., Dimitrov, O., Korznikova, G.F., Dallas, J.P., Quivy, A., Valiev, R.Z.Mukherjee, A.: Nanocrystalline structure and phase transformation of the intermetallic compound TiAl processed by severe plastic deformation. Nanostruct. Mater. 11, 17 1999CrossRefGoogle Scholar
10Zghal, S., Thomas, M., Naka, S., Finel, A.Couret, A.: Phase transformations in TiAl based alloys. Acta Mater. 53, 2653 2005Google Scholar
11Appel, F., Beaven, P.A.Wagner, R.: Deformation processed related to interfacial boundaries in two-phase γ-titanium aluminides. Acta Metal. Mater. 41, 1721 1993CrossRefGoogle Scholar
12Ye, H.Q., He, L.L., Yu, R.Peng, H.Y.: HREM observation and compositional study of microstructure and phase transformation in TiAl-based and Cu–Al–Ni alloys. J. Electron Microsc. (Tokyo)(Suppl. S)48, 1099 1999Google Scholar
13Fu, C.L.Yoo, M.H.: Interfacial energies in two-phase TiAl–Ti3Al alloy. Scripta Mater. 37, 1453 1997Google Scholar
14Fu, C.L., Zou, J.Yoo, M.H.: Elastic constants and planar fault energies of Ti3Al and interfacial energies at the Ti3Al/TiAl interface by first-principles calculations. Scripta Metall. Mater. 33, 885 1995Google Scholar
15Maahapatra, R., Girshick, A., Pope, D.P.Vitek, V.: Deformation mechanisms of near-stoichiometric single phase TiAl single crystals: A combined experimental and atomistic modeling study. Scripta Metall. Mater. 33, 1921 1995Google Scholar
16Siegl, R.Vitek, V.: Directional bonding and asymmetry of interfacial structure in intermetallic TiAl: Combined theoretical and electron microscopy study. Philos. Mag. A 75, 1447 1997Google Scholar
17Vitek, V., Ito, K., Siegl, R.Znam, S.: Structure of interfaces in the lamellar TiAl: Effects of directional bonding and segregation. Mater. Sci. Eng., A 239(240), 752 1997Google Scholar
18Gruhn, W., Kityk, I.V.Benet, S.: Photoinduced optical second harmonic generation in Fe–Co metallic spin glasses. Mater. Lett. 55, 158 2002Google Scholar
19Zope, R.R.Mishin, Y.: Interatomic potentials for atomistic simulations of the Ti–Al system. Phys. Rev. B 68, 024102 2003CrossRefGoogle Scholar
20Vitek, V.: Intrinsic stacking faults in body-centered cubic crystals. Philos. Mag. 18, 773 1968Google Scholar
21Duesbery, M.S.Vitek, V.: Plastic anisotropy in B.C.C transition metals. Acta Mater. 46, 1481 1998CrossRefGoogle Scholar
22Rice, J.R.: Dislocation nucleation from a crack tip: An analysis based on the peierls concept. J. Mech. Phys. Solids 40, 239 1992Google Scholar
23Rifkin, J.: Molecular dynamics for metals and ceramicshttp://www.ims.uconn.edu/centers/simul/.Google Scholar
24Hammerberg, J.E., Holian, B.L., Roder, J., Bishop, A.R.Zhou, S.J.: Nonlinear dynamics and the problem of slip at material interfaces. Physica D 123, 330 1998Google Scholar
25Delogu, F.Cocco, G.: Molecular dynamics investigation on the role of sliding interfaces and the friction in the formation of amorphous phases. Phys. Rev. B 71, 144108 2005CrossRefGoogle Scholar
26Hultgren, R., Orr, R.L., Andersom, P.Helley, K.K.: Selected Values of Therodynamic Properties of Binary Alloys Wiley New York 1963Google Scholar
27Liu, Y.L., Liu, L.M., Wang, S.Q.Ye, H.Q.: First-principles study of shear deformation in TiAl and Ti3Al. Intermetallics 15, 428 2007Google Scholar
28Liu, Y.L., Liu, L.M., Wang, S.Q.Ye, H.Q.: First-principles study of shear deformation in TiAl alloys. J. Alloy. Compd.(in press)Google Scholar
29Payne, M.C., Teter, M.P., Allan, D.D., Arias, T.A.Johannopoulos, J.D.: Iterative minimization techniques for ab initio total energy calculations: Molecular dynamics and conjugate gradients. Rev. Mod. Phys. 64, 1045 1992Google Scholar
30Hohenberg, P.Kohn, W.: Inhomogeneous electron gas. Phys. Rev. 136, B864 1964Google Scholar
31Kohn, W.Sham, L.J.: Self-consistent equations including exchange and correlation effects. Phys. Rev. 140, A1133 1965Google Scholar
32Perdew, J.P., Burke, K.Ernzerhof, M.: Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865 1996CrossRefGoogle ScholarPubMed
33Monkhorst, H.J.Pack, J.D.: Special points for Brillouin-zone integrations. Phys. Rev. B 13, 5188 1976Google Scholar