Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-11T09:01:06.085Z Has data issue: false hasContentIssue false

Si3N4–SiC–Y2O3 ceramics derived from yttrium-modified block copolymer of perhydropolysilazane and hydroxy-polycarbosilane

Published online by Cambridge University Press:  31 January 2011

Yuji Iwamoto
Affiliation:
Fine Ceramics Research Associated, Synergy Ceramics Laboratory, 2–4-1 Mutsuno Atsuta-ku, Nagoya 456–8587, Japan
Ko-ichi Kikuta
Affiliation:
Graduate School of Engineering, Nagoya University, 1 Furo-cho, Chikusa-ku, Nagoya 464–8603, Japan
Shin-ichi Hirano
Affiliation:
Graduate School of Engineering, Nagoya University, 1 Furo-cho, Chikusa-ku, Nagoya 464–8603, Japan
Get access

Abstract

A polymeric precursor for the Si3N4–SiC–Y2O3 ceramic system was synthesized by block copolymerization of perhydropolysilazane (PHPS) with hydroxy-polycarbosilane (PCS-OH), followed by chemical modification with yttrium methoxide. Fully dense Si3N4–SiC–Y2O3 ceramics were successfully synthesized by pyrolysis of the polymeric precursor at 1000 °C, followed by hot pressing at 1800 °C in N2. The resulting ceramics revealed that β–SiC particles were dispersed in a size range of about 10–600 nm, and a large amount of β–SiC submicron particles were segregated at the β–Si3N4 matrix grain boundaries. It was found that the yttrium-modified block copolymer of PHPS and PCS-OH yielded unique binary ceramics composed of β–SiC–Y2O3 and β–SiC nanoparticle-dispersed Si3N4–Y2O3.

Type
Articles
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Niihara, K., Izaki, K., and Kawakami, T., J. Mater. Sci. Lett. 10, 112114 (1990).CrossRefGoogle Scholar
2.Sasaki, G., Nakase, H., Suganuma, K., Fujita, T., and Niihara, K., J. Jpn. Ceram. Soc. 100 (4), 536540 (1992).CrossRefGoogle Scholar
3.Ukyo, Y., Kandori, T., and Wada, S., J. Jpn. Ceram. Soc. 101 (12), 536540 (1993).CrossRefGoogle Scholar
4.Herrmann, M., Scuber, C., Rendel, A., and Hubner, H., J. Am. Ceram. Soc. 81 (5), 10953109 (1998).CrossRefGoogle Scholar
5.Wynne, K. J. and Rice, R. W., Annu. Rev. Mater. Sci. 14, 297334 (1984).CrossRefGoogle Scholar
6.Seyferth, D. and Wiseman, G. H., in Ultrastructure Processing of Ceramics, Glasses and Composites, edited by Hench, L. L. and Ulrich, D. R. (Wiley-Interscience, New York, 1984), pp. 26562671.Google Scholar
7.Schwartz, K. B., Rowcliffe, D. J., Blum, Y. D., and Raine, R. M., in Better Ceramics Through Chemistry II, edited by Brinker, C. J., Clark, D. E., and Ulrich, D. R. (Mater. Res. Soc. Symp. Proc. 73, Pittsburgh, PA, 1986), pp. 265271.Google Scholar
8.Schmit, W. R., Sukumar, V., Hurley, W. J. Jr, Garcia, R., Doremus, R. H., and Interrante, L. V., J. Am. Ceram. Soc. 73 (8), 24122418 (1990).CrossRefGoogle Scholar
9.Funayama, O., Arai, M., Tashiro, Y., Aoki, H., Suzuki, T., Tamura, K., Kaya, H., Nishii, H., and Isoda, T., J. Ceram. Soc. Jpn. 98 (1), 104107 (1990).CrossRefGoogle Scholar
10.Yajima, S., Okamura, K., Hayashi, J., and Omori, M., Chem. Lett. (9), 931934 (1975).CrossRefGoogle Scholar
11.Yajima, S., Hayashi, J., and Omori, M., J. Am. Ceram. Soc. 59 (7–8), 324327 (1976).CrossRefGoogle Scholar
12.West, R., in Ultrastructure Processing of Ceramics, Glasses and Composites, edited by Hench, L. L. and Ulrich, D.R. (Wiley-Interscience, New York, 1984), pp. 235244.Google Scholar
13.Paine, R. T. and Narula, C. K., Chem. Mater. 5, 269279 (1993).Google Scholar
14.Bill, J. and Aldinger, F., Adv. Mater. 7 (9), 775787 (1995).CrossRefGoogle Scholar
15.Reidel, R. and Dressler, W., Ceram. Int. 22, 233239 (1996).CrossRefGoogle Scholar
16.Yajima, S., Iwai, T., Yamanaka, T., Okamura, K., and Hasegawa, Y., J. Mater. Sci. 16, 13491355 (1981).CrossRefGoogle Scholar
17.Soraruù, G.D., Ravagni, A., Maschio, R. D., and Arturan, G., J. Am. Ceram. Soc. 74 (9), 22202223 (1991).CrossRefGoogle Scholar
18.Sorarù, G.D., Ravagni, A., and Campostrini, R., J. Eur. Ceram. Soc. 8, 2934 (1991).Google Scholar
19.Seyferth, D., Brodt, G., and Boury, B., J. Am. Ceram. Soc. 73 (7), 21312133 (1990).CrossRefGoogle Scholar
20.Schmit, W.R., Hurley, W.J. Jr, Doremus, R. H., Interrante, L.V., and Marchetti, P. S., in Advanced Composite Materials, edited by Sacks, M.D. (Ceram. Trans. 19, The American Ceramic Society, Westerville, OH, 1991), pp. 1925.Google Scholar
21.Seyferth, D. and Plenio, H., J. Mater. Sci. Lett. 15, 348349 (1996).CrossRefGoogle Scholar
22.Bill, J., Friess, M., Aldinger, F., and Riedel, R., in Better Ceramics Through Chemistry VI, edited by Cheetham, A. K., Brinker, C. J., Mecartney, M.L., and Sanchez, C. (Mater. Res. Soc. Symp. Proc. 346, Pittsburgh, PA, 1994), pp. 605615.Google Scholar
23.Funayama, O., Kato, T., Tashiro, Y., and Isoda, T., J. Am. Ceram. Soc. 76 (3), 717723 (1993).CrossRefGoogle Scholar
24.Funayama, O., Tashiro, Y., Aoki, T., and Isoda, T., J. Jpn. Ceram. Soc. 102 (10), 908912 (1994).CrossRefGoogle Scholar
25.Iwamoto, Y., Kikuta, K., and Hirano, S., J. Mater. Res. 13, 353361 (1998).CrossRefGoogle Scholar
26.Seyferth, D., Wiseman, G., and Prud'homme, C., J. Am. Ceram. Soc. 66 (1), C13 (1983).CrossRefGoogle Scholar
27.Silverstein, R.M., Bassler, G. C., and Morrill, T. C., Spectrometric Identification of Organic Compounds, 5th ed. (John Wiley & Sons, Inc., New York, 1991), Chaps. 3–4.Google Scholar
28.Bahloul, D., Pereira, M., Goursat, P., Choong Kwet Yive, N. S., and Corriu, R.J. P., J. Am. Ceram. Soc. 76 (5), 11561162 (1993).CrossRefGoogle Scholar