Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2024-12-23T15:52:04.225Z Has data issue: false hasContentIssue false

Silicon carbide-induced piezoelectric β-phase in poly(vinylidene fluoride) and its properties

Published online by Cambridge University Press:  09 May 2012

Jay Sheth
Affiliation:
Department of Ceramic Engineering, Institute of Technology, Banaras Hindu University, Varanasi-221005, India
Devendra Kumar
Affiliation:
Department of Ceramic Engineering, Institute of Technology, Banaras Hindu University, Varanasi-221005, India
Vimal K. Tiwari
Affiliation:
School of Materials Science and Technology, Institute of Technology, Banaras Hindu University, Varanasi-221005, India
Pralay Maiti*
Affiliation:
School of Materials Science and Technology, Institute of Technology, Banaras Hindu University, Varanasi-221005, India
*
a)Address all correspondence to this author. e-mail: pralay_maiti@yahoo.com
Get access

Abstract

The piezoelectric β-phase of poly(vinylidene fluoride) (PVDF) has been synthesized through solution route in presence of varying percentage of silicon carbide (SiC). Various measurements were conducted to analyze the effect of SiC addition on structural, mechanical, and dielectric properties, as also the properties affecting hydrophilicity and morphology of PVDF. The x-ray diffraction, Fourier transform infrared spectroscopic and differential scanning calorimetry analyses confirm the presence of β-phase of PVDF on addition of SiC. The Young’s modulus of the composites increases as compared with pristine PVDF. The hydrophilic nature of the composites improves with increasing SiC content. Dielectric constant increases in composites, especially at lower frequency range and the relaxation pattern in the crystalline phase changes significantly causing reduction of relaxation frequency with increasing SiC concentration.

Type
Articles
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Takahashi, Y. and Tadakoro, H.: Crystal structure of form III of poly(vinylidene fluoride). Macromolecules 13, 1317 (1980).CrossRefGoogle Scholar
2.Takahashi, Y., Matsubara, Y., and Tadakoro, H.: Crystal structure of form II of poly(vinylidene fluoride). Macromolecules 16, 1588 (1983).CrossRefGoogle Scholar
3.Gao, Q. and Scheinbeim, J.I.: Dipolar intermolecular interactions, structural development, and electromechanical properties in ferroelectric polymer blends of nylon-11 and poly(vinylidene fluoride). Macromolecules 33, 7564 (2000).CrossRefGoogle Scholar
4.Benz, M. and Euler, W.B.: Determination of the crystalline phases of poly(vinylidene fluoride) under different preparation conditions using differential scanning calorimetry and infrared spectroscopy. J. Appl. Polym. Sci. 89, 1093 (2003).CrossRefGoogle Scholar
5.Maiti, P., Chatterjee, J., Rana, D., and Nandi, A.K.: Melting and crystallization behaviour of poly(vinylidene fluoride) samples in its blends with some polyacrylates, poly(vinyl esters) and poly(aryl ether ether ketone). Polymer 34, 4273 (1993).CrossRefGoogle Scholar
6.Johnson, G.E., Blyler, L.L., Crane, G.R., and Gieniewski, C.: Thermal piezoelectric stability of poled uniaxially oriented and biaxially oriented poly(vinylidene fluoride). Ferroelectrics 32, 43 (1981).CrossRefGoogle Scholar
7.Jassa, E. and Arshak, K.: The use of PE/PVDF pressure and temperature sensors in smart wireless sensor network system developed for environmental monitoring. Sens. Lett. 6, 1 (2008).Google Scholar
8.Takse, Y. and Odajima, A.: Ferroelectric polarization switching in polyvinylidene fluoride. Jpn. J. Appl. Phys., Part 2 21, L707 (1982).CrossRefGoogle Scholar
9.Naoto, T., Yashiaki, U., and Tsuyoshi, K.: Thermal stability of internal electric field and polarization distribution in blend of polyvinylidene fluoride and polymethylmethacrylate. J. Appl. Phys. 74, 3366 (1993).Google Scholar
10.Tawansi, A., Abdelkader, H.I., Balachandran, W., and Abdelrazek, E.M.: FeCl3 doped polyvinylidene fluoride part II pauli susceptibility and microwave response. J. Mater. Sci. 29, 4001 (1994).CrossRefGoogle Scholar
11.Hughes, S.T. and Piery, A.R.: The simultaneous measurement of pyroelectric and relaxation currents in poly(vinylidene fluoride). J. Phys. E: Sci. Instrum. 19, 976 (1986).CrossRefGoogle Scholar
12.Valentini, R.F., Vargo, T.G., Gardella, J.A., and Aebischer, P.: Patterned neuronal attachment and outgrowth on surface-modified, electrically charged fluoropolymer substrates. J. Biomater. Sci., Polym. Ed. 5, 13 (1993).CrossRefGoogle ScholarPubMed
13.Leonard, C., Halary, J.L., and Monnerie, L.: Crystallization of poly(vinylidene fluoride)-poly(methyl methacrylate) blends: Analysis of the molecular parameters controlling the nature of poly(vinylidene fluoride) crystalline phase. Macromolecules 21, 2988 (1988).CrossRefGoogle Scholar
14.Tawansi, A., Ayad, M.I., and Abdelrazek, E.M.: Effect of valence electron spin polarization on the physical properties of CuCl2-filled poly(vinylidene fluoride) as a microwave modulator. J. Appl. Polym. Sci. 72, 771 (1999).3.0.CO;2-O>CrossRefGoogle Scholar
15.Tawansi, A., Oraby, A.H., Abdelrazek, E.M., Ayad, M.I., and Abdelaziz, M.: Effect of local structure of MnCl2-filled PVDF films on their optical, electrical, electron spin resonance, and magnetic properties. J. Appl. Polym. Sci. 70, 1437 (1998).3.0.CO;2-8>CrossRefGoogle Scholar
16.Scheinbeim, J., Nakafuku, C., Newman, B.A., and Pae, K.D.: High pressure crystallization of poly(vinylidene fluoride). J. Appl. Phys. 50, 4399 (1979).CrossRefGoogle Scholar
17.Wang, J., Li, H., Liu, J., Duan, Y., Jiang, S., and Yan, S.: On the α → β transition of carbon-coated highly oriented PVDF ultrathin film induced by melt recrystallization. J. Am. Chem. Soc. 125, 1496 (2003).CrossRefGoogle ScholarPubMed
18.Lovinger, A.J.: Crystallization of the beta-phase of poly(vinylidene fluoride) from the melt. Polymer 22, 412 (1981).CrossRefGoogle Scholar
19.Priya, L. and Jog, J.P.: Poly(vinylidene fluoride)/clay nanocomposites prepared by melt intercalation: crystallization dynamic mechanical behavior studies. J. Polym. Sci., Part B: Polym. Phys. 40, 1682 (2002).CrossRefGoogle Scholar
20.Yu, S., Zheng, W., Yu, W., Zhang, Y., Jiang, Q., and Zhao, Z.: Formation mechanism of β-phase in PVDF/CNT composite prepared by the sonication method. Macromolecules 42, 8870 (2009).CrossRefGoogle Scholar
21.Shah, D., Maiti, P., Gunn, E., Schmidt, D.F., Jiang, D.D., Butt, C.A., and Giannelis, E.P.: Dramatic enhancements in toughness of polyvinylidene fluoride nanocomposite via nanoclay-directed crystal structure and morphology. Adv. Mater. 16(14), 1173 (2004).CrossRefGoogle Scholar
22.Wang, H-G., Mu, B., Ren, J-F., Jian, L-Q., Zhang, J-Y., and Yang, S-R.: Mechanical and tribological behaviors of PA66/PVDF blends filled with calcium sulfate whiskers. Polym. Compos. 30(9), 1326 (2009).CrossRefGoogle Scholar
23.Fissel, A., Schroter, B., and Richter, W.: Low-temperature growth of SiC thin- films on Si and 6H-SiC by solid-source molecular-beam epitaxy. Appl. Phys. Lett. 66, 3182 (1995).CrossRefGoogle Scholar
24.Krstic, V.D.: Production of fine, high- purity beta silicon-carbide powders. J. Am. Ceram. Soc. 75, 170 (1992).CrossRefGoogle Scholar
25.Tiwari, V.K., Kulriya, P.K., Avasthi, D.K., and Maiti, P.: Radiation-resistant behavior of poly(vinylidene fluoride)/layered silicate nanocomposites. Appl. Mater. Interfaces 1(2), 311 (2009).CrossRefGoogle ScholarPubMed
26.Tiwari, V.K., Kulriya, P.K., Avasthi, D.K., and Maiti, P.: Poly(vinylidene fluoride-co-hexafluoro propylene)/layered silicate nanocomposites: The effect of swift heavy ion. J. Phys. Chem. B 113, 11632 (2009).CrossRefGoogle ScholarPubMed
27.Manna, S., Batabyal, S.K., and Nandi, A.K.: Preparation and characterization of silver-poly(vinylidene fluoride) nanocomposites: Formation of piezoelectric polymorph of poly(vinylidene fluoride). J. Phys. Chem. B 110, 12318 (2006).CrossRefGoogle ScholarPubMed
28.Miyamoto, Y., Miyaji, H., and Asai, K.: Anisotropy dielectric relaxation crystal form poly(vinylidene fluoride). J. Polym. Sci., Part B: Polym. Phys. 18, 597 (1980).Google Scholar
29.Bello, A., Laredo, E., and Grimau, M.: Distribution of relaxation times from dielectric spectroscopy using Monte Carlo simulated annealing: Application to alpha-PVDF. Phys. Rev. B 60, 12764 (1999).CrossRefGoogle Scholar
30.Chanmal, C.V. and Jog, J.P.: Dielectric relaxations in PVDF/BaTiO(3) nanocomposites. Express Polym. Lett. 2, 294 (2008).CrossRefGoogle Scholar
31.Mijovic, J., Lee, H., Kenny, J., and Mays, J.: Dynamics in polymer silicate nanocomposites as studied by dielectric relaxation spectroscopy and dynamic mechanical spectroscopy. Macromolecules 39, 2172 (2006).CrossRefGoogle Scholar