Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-24T23:04:57.580Z Has data issue: false hasContentIssue false

Solvothermal synthesis of carbon nitrogen nanotubes and nanofibers

Published online by Cambridge University Press:  01 July 2006

Tiancheng Mu
Affiliation:
Department of Chemistry, Renmin University of China, Beijing 100872, People's Republic of China; and Center for Molecular Science, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100080, People's Republic of China
Jun Huang
Affiliation:
Center for Molecular Science, Institute of Chemistry, Chinese Academy of Sciences,Beijing 100080, People's Republic of China
Zhimin Liu
Affiliation:
Center for Molecular Science, Institute of Chemistry, Chinese Academy of Sciences,Beijing 100080, People's Republic of China
Zhonghao Li
Affiliation:
Center for Molecular Science, Institute of Chemistry, Chinese Academy of Sciences,Beijing 100080, People's Republic of China
Buxing Han*
Affiliation:
Center for Molecular Science, Institute of Chemistry, Chinese Academy of Sciences,Beijing 100080, People's Republic of China
*
a) Address all correspondence to this author. e-mail: tcmu@chem.ruc.edu.cn
Get access

Abstract

Carbon nitrogen nanotubes and nanofibers with controlled nitrogen concentration have been prepared by reaction of cyanuric chloride and hexachlorobenzene (HCB) with sodium metal at 250 °C in cyclohexane. Electron microscopy and spectroscopic analysis were used to characterize the products. The total yields of the tubes and fibers decrease as the ratio of cyanuric chloride to HCB increases, and nitrogen content in the products could be controlled by the ratio. The nanostructures depended strongly on the nitrogen content. Lower nitrogen content was favorable for producing linear products.

Type
Articles
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Iijima, S.: Helical microtubules of graphitic carbon. Nature 354, 56 (1991).CrossRefGoogle Scholar
2.Stephan, O., Ajayan, P.M., Colliex, C., Redlich, P., Lambert, J.M., Bernier, P., Lefin, P.: Doping graphitic and carbon nanotube structures with boron and nitrogen. Science 266, 1683 (1994).CrossRefGoogle ScholarPubMed
3.Sen, R., Satishkumar, B.C., Govindaraj, A., Harikumar, K.R., Raina, G., Zhang, J.P., Cheetham, A.K., Rao, C.N.R.: B–C–N, C–N, and B–N nanotubes produced by the pyrolysis of precursor molecules over Co catalysts. Chem. Phys. Lett. 287, 671 (1998).CrossRefGoogle Scholar
4.Teter, D.M., Hemley, R.J.: Low-compressibility carbon nitrides. Science 271, 53 (1996).Google Scholar
5.Xu, W.H., Kyotani, T., Pradhan, B.K., Nakajima, T., Tomita, A.: Synthesis of aligned carbon nanotubes with double coaxial structure of nitrogen-doped and undoped multiwalls. Adv. Mater. 15(13), 1087 (2003).CrossRefGoogle Scholar
6.Suenaga, K., Yudasaka, M., Colliex, C., Iijima, S.: Radically modulated nitrogen distribution in CNx nanotubular structures prepared by CVD using Ni phthalocyanine. Chem. Phys. Lett. 316, 365 (2000).Google Scholar
7.Terrones, M., Grobert, N., Olivares, J., Zhang, J.P., Terrones, H., Kordatos, K., Hsu, W.K., Hare, J.P., Townsend, P.D., Prassides, K., Cheetham, A.K., Kroto, H.W., Walton, D.R.M.: Controlled production of aligned-nanotube bundles. Nature 388, 52 (1997).CrossRefGoogle Scholar
8.Yudasaka, M., Kikuchi, R., Ohki, Y., Yoshimura, S.: Nitrogen-containing carbon nanotube growth from Ni phthalocyanine by chemical vapor deposition. Carbon 35(2), 195 (1997).Google Scholar
9.Grobert, N., Terrones, M., Trasobares, S., Kordatos, K., Terrones, H., Olivares, J., Zhang, J.P., Redlich, P., Hsu, W.K., Reeves, C.L., Wallis, D.J., Zhu, Y.Q., Hare, J.P., Pidduck, A.J., Kroto, H.W., Walton, D.R.M.: A novel route to aligned nanotubes and nanofibers using laser-patterned catalytic substrates. Appl. Phys. A: Mater. Sci. Process. 70, 175 (2000).Google Scholar
10.Terrones, M., Redlich, P., Grobert, N., Trasobares, S., Hsu, W.K., Terrones, H., Zhu, Y.Q., Hare, J.P., Reeves, C.L., Cheetham, A.K., Ruhle, M., Kroto, H.W., Walton, D.R.M.: Carbon nitride nanocomposites: Formation of aligned CxNy nanofibers. Adv. Mater. 11, 655 (1999).3.0.CO;2-6>CrossRefGoogle Scholar
11.Nath, M., Satishkumar, B.C., Govindaraj, A., Vinod, C.P., Rao, C.N.R.: Production of bundles of aligned carbon and carbon-nitrogen nanotubes by the pyrolysis of precursors on silica-supported iron and cobalt catalysts. Chem. Phys. Lett. 322, 333 (2000).Google Scholar
12.Fan, S.S., Chapline, M.G., Franklin, N.R., Tombler, T.W., Cassell, A.M., Dai, H.J.: Self-oriented regular arrays of carbon nanotubes and their field-emission properties. Science 283, 512 (1999).CrossRefGoogle ScholarPubMed
13.Terrones, M., Terrones, H., Grobert, N., Hsu, W.K., Zhu, Y.Q., Hare, J.P., Kroto, H.W., Walton, D.R.M., Kohler-Redlich, P., Ruhle, M., Zhang, J.P., Cheetham, A.K.: Efficient route to large arrays of CNx nanofibers by pyrolysis of ferrocene/melamine mixtures. Appl. Phys. Lett. 75, 3932 (1999).CrossRefGoogle Scholar
14.Wang, X.B., Liu, Y.Q., Zhu, D.B., Zhang, L., Ma, H.Z., Yao, N., Zhang, B.L.: Controllable growth, structure, and low field emission of well-aligned CNx nanotubes. J. Phys. Chem. B 106, 2186 (2002).CrossRefGoogle Scholar
15.Terrones, M., Ajayan, P.M., Banhart, F., Blase, X., Carroll, D.L., Charlier, J.C., Czerw, R., Foley, B., Grobert, N., Kamalakaran, R., Kohler-Redlich, P., Ruhle, M., Seeger, T., Terrones, H.: N-doping and coalescence of carbon nanotubes: Synthesis and electronic properties. Appl. Phys. A: Mater. Sci. Process. 74, 355 (2002).CrossRefGoogle Scholar
16.Sung, S.L., Tsai, S.H., Tseng, C.H., Chiang, F.K., Liu, X.W., Shih, H.C.: Well-aligned carbon nitride nanotubes synthesized in anodic alumina by electron cyclotron resonance chemical vapor deposition. Appl. Phys. Lett. 74, 197 (1999).CrossRefGoogle Scholar
17.Lee, Y.T., Kim, N.S., Bae, S.Y., Park, J., Yu, S.C., Ryu, H., Lee, H.J.: Growth of vertically aligned nitrogen-doped carbon nanotubes: Control of the nitrogen content over the temperature range 900–1100 degrees C. J. Phys. Chem. B 107, 12958 (2003).Google Scholar
18.Trasobares, S., Stephan, O., Colliex, C., Hsu, W.K., Kroto, H.W., Walton, D.R.M.: Compartmentalized CNx nanotubes: Chemistry, morphology, and growth. J. Chem. Phys. 116(20), 8966 (2002).Google Scholar
19.Glerup, M., Castignolles, M., Holzinger, M., Hug, G., Loiseau, A., Bernier, P.: Synthesis of highly nitrogen-doped multi-walled carbon nanotubes. Chem. Comm. 20, 2542 (2003).Google Scholar
20.Tang, C.C., Golberg, D., Bando, Y., Xu, F.F., Liu, B.D.: Synthesis and field emission of carbon nanotubular fibers doped with high nitrogen content. Chem. Comm. 24, 3050 (2003).CrossRefGoogle Scholar
21.Qian, D.L., Andrews, R., Jacques, D., Kichambare, P., Lian, G., Dickey, E.C.: Low-temperature synthesis of large-area CNx nanotube arrays. J. Nanosci. Nanotech. 3, 93 (2003).CrossRefGoogle ScholarPubMed
22.Jung, J., Perrut, M.: Particle design using supercritical fluids: Literature and patent survey. J. Supercrit. Fluids 20, 179 (2001).CrossRefGoogle Scholar
23.Grocholl, L., Wang, J.J., Gillan, E.G.: Synthesis of sub-micron silver and silver sulfide particles via solvothermal silver azide decomposition. Mater. Res. Bull. 38, 213 (2003).CrossRefGoogle Scholar
24.Chen, S.J., Li, L.H., Chen, X.T., Xue, Z.L., Hong, J.M., You, X.Z.: Preparation and characterization of nanocrystalline zinc oxide by a novel solvothermal oxidation route. J. Cryst. Growth 252, 184 (2003).CrossRefGoogle Scholar
25.Jiang, Y., Wu, Y., Zhang, S.Y., Xu, C.Y., Yu, W.C., Xie, Y., Qian, Y.T.: A catalytic-assembly solvothermal route to multiwall carbon nanotubes at a moderate temperature. J. Am. Chem. Soc. 122, 12383 (2000).CrossRefGoogle Scholar
26.Li, Y.D., Qian, Y.T., Liao, H.W., Ding, Y., Yang, L., Xu, C.Y., Li, F.Q., Zhou, G.: A reduction-pyrolysis-catalysis synthesis of diamond. Science 281, 246 (1998).Google Scholar
27.Lee, C.Y., Chiu, H.T., Peng, C.W., Yen, M.Y., Chang, Y.H., Liu, C.S.: Polygon building block route to sp(2)-carbon-based materials. Adv. Mater. 13, 1105 (2001).3.0.CO;2-#>CrossRefGoogle Scholar
28.Hu, G., Cheng, M.J., Ma, D., Bao, X.H.: Synthesis of carbon nanotube bundles with mesoporous structure by a self-assembly solvothermal route. Chem. Mater. 15, 1470 (2003).CrossRefGoogle Scholar
29.Hu, G., Ma, D., Cheng, M.J., Liu, L., Bao, X.H.: Direct synthesis of uniform hollow carbon spheres by a self-assembly template approach. Chem. Commun. 17, 1948 (2002).Google Scholar
30.O'Loughlin, J.L., Kiang, C.H., Wallace, C.H., Reynolds, T.K., Rao, L., Kaner, RB.: Rapid synthesis of carbon nanotubes by solid-state metathesis reactions. J. Phys. Chem. B 105, 1921 (2001).Google Scholar
31.Andreyev, A., Akaishi, M., Golberg, D.: Sodium flux-assisted low-temperature high-pressure synthesis of carbon nitride with high nitrogen content. Chem. Phys. Lett. 372, 635 (2003).CrossRefGoogle Scholar
32.Mu, T.C., Huang, J., Liu, Z.M., Han, B.X., Li, Z.H., Wang, Y., Jiang, T., Gao, H.X.: Synthesis and characterization of polyether structure carbon nitride. J. Mater. Res. 19, 1736 (2004).CrossRefGoogle Scholar
33.Cao, C.B., Huang, F.L., Cao, C.T., Li, J., Zhu, H.: Synthesis of carbon nitride nanotubes via a catalytic-assembly solvothermal route. Chem. Mater. 16, 5213 (2004).Google Scholar
34.Guo, Q.X., Xie, Y., Wang, X.J., Zhang, S.Y., Hou, T., Lv, S.C.: Synthesis of carbon nitride nanotubes with the C3N4 stoichiometry via a benzene-thermal process at low temperatures. Chem. Commun. 1, 26 (2004).Google Scholar
35.Khabashesku, V.N., Zimmerman, J.L., Margrave, J.L.: Powder synthesis and characterization of amorphous carbon nitride. Chem. Mater. 12, 3264 (2000).CrossRefGoogle Scholar
36.Zimmerman, J.L., Williams, R., Khabashesku, V.N., Margrave, J.L.: Synthesis of spherical carbon nitride nanostructures. Nano Lett. 1, 731 (2001).CrossRefGoogle Scholar
37.Kroke, E., Schwarz, M.: Novel group 14 nitrides. Coord. Chem. Rev. 248, 493 (2004).Google Scholar
38.Miyamoto, Y., Cohen, M.L., Louie, S.G.: Theoretical investigation of graphitic carbon nitride and possible tubule forms. Solid State Commun. 102, 605 (1997).Google Scholar
39.Lowther, J.E.: Defective and amorphous structure of carbon nitride. Phys. Rev. B 57, 5724 (1998).CrossRefGoogle Scholar
40.Kiang, C.H., Goddard, W.A.: Polyyne ring nucleus growth model for single-layer carbon nanotubes. Phys. Rev. Lett. 76, 2515 (1996).Google Scholar
41.Lee, Y.H., Kim, S.G., Tomanek, D.: Catalytic growth of single-wall carbon nanotubes: An ab initio study. Phys. Rev. Lett. 78, 2393 (1997).CrossRefGoogle Scholar
42.Maiti, A., Brabec, C.J., Bernholc, J.: Kinetics of metal-catalyzed growth of single-walled carbon nanotubes. Phys. Rev. B 55, R6097 (1997).Google Scholar
43.Andriotis, A.N., Menon, M., Froudakis, G.: Catalytic action of Ni atoms in the formation of carbon nanotubes: A molecular dynamics study. Phys. Rev. Lett. 85, 3193 (2000).Google Scholar
44.Kim, N.S., Lee, Y.T., Park, J., Ryu, H., Lee, H.J., Choi, Y.S., Choo, J.: Dependence of the vertically aligned growth of carbon nanotubes on the catalysts. J. Phys. Chem. B 106, 9286 (2002).Google Scholar
45.Kim, N.S., Lee, Y.T., Park, J., Han, J.B., Choi, Y.S., Choi, S.Y., Choo, J., Lee, G.H.: Vertically aligned carbon nanotubes grown by pyrolysis of iron, cobalt, and nickel phthalocyanines. J. Phys. Chem. B 107, 9249 (2003).Google Scholar
46.Ivanov, B.L., Zambov, L.M., Georgiev, G.T., Popov, C., Plass, M.F., Kulisch, W.: Low-pressure CVD of carbon nitride using triazine-containing precursors. Chem. Vap. Deposition 5, 265 (1999).Google Scholar