Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-26T13:48:20.105Z Has data issue: false hasContentIssue false

Strain hardening during superplastic deformation of A1-7475 alloy

Published online by Cambridge University Press:  31 January 2011

H. E. Adabbo*
Affiliation:
Centro Nacional de Investigaciones Metalúurgicas, C.S.I.C., Av. de Gregorio del Amo 8, 28040 Madrid, Spain
G. González-Doncel
Affiliation:
Centro Nacional de Investigaciones Metalúurgicas, C.S.I.C., Av. de Gregorio del Amo 8, 28040 Madrid, Spain
O. A. Ruano
Affiliation:
Centro Nacional de Investigaciones Metalúurgicas, C.S.I.C., Av. de Gregorio del Amo 8, 28040 Madrid, Spain
J. M. Belzunce*
Affiliation:
Department of Materials Science and Engineering, Stanford University, Stanford, California 94305
O. D. Sherby
Affiliation:
Department of Materials Science and Engineering, Stanford University, Stanford, California 94305
*
a)Permanent address: Instituto de Investigaciones en Ciencia y Tecnología de Materiales, CONICET, Juan B. Justo 4302, Mar del Plata (7600), Argentina.
b)Permanent address: Cristalería Espanola, Carr. Madrid-Barcelona km 34.5, 28800 Alcalá de Henares, Spain.
Get access

Abstract

Strain hardening dominates the deformation process in fine-grained A1-7475 alloy in the temperature range 400 to 515 °C. It is shown that anomalously low stress exponents are obtained as a result of strain hardening in strain-rate-change tests. In order to measure stress exponents in a quasi-steady state condition, the samples must be initially deformed at a relatively high stress (≍ 10 MPa) to a relatively high strain (∊ ≍ 0.5) before initiating a strain-rate-change test. Such a procedure revealed that a stress exponent about equal to two and an activation energy (141 kJ/mole) nearly equal to the activation energy for lattice diffusion are obtained. The results are interpreted in terms of a model involving grain boundary sliding accommodated by slip following the Gifkins' “core and mantle” concept. It is proposed that strain hardening is associated with the development of a boundary-dislocation structure in the mantle region in a manner similar to the development of subgrains in the core of a grain when slip is the principal deformation mode.

Type
Articles
Copyright
Copyright © Materials Research Society 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Hamilton, C. H.Bampton, C. C. and Paton, N. E. in Superplastic Forming of Structural Alloys, edited by Paton, N. E. and Hamilton, C. H. (TMS-AIME, Warrendale, PA, 1982), p. 173.Google Scholar
2Ashby, M. F. and Verrall, R. A.Acta Metall. 21 149 (1973).CrossRefGoogle Scholar
3Belzunce, J.M.Engineer's Dissertation, Stanford University (1983).Google Scholar
4Rao, M.K. and Mukherjee, A.K.Mater. Sci. Eng. 80 181 (1986).CrossRefGoogle Scholar
5Weertman, J.Trans. AIME 239 1989 (1967).Google Scholar
6Ruano, O.A.Wadsworth, J. and Sherby, O.D.Mater. Sci. Eng. 84, LI (1986).CrossRefGoogle Scholar
7Sherby, O. D. and Ruano, O.A. in Superplastic Forming of Structural Alloys, edited by Paton, N.E. and Hamilton, C.H. (TMS-AIME, Warrendale, PA, 1982), p. 241.Google Scholar
8Sritharan, T. and Jones, H.Acta Metall. 27 1293 (1979).CrossRefGoogle Scholar
9Mohamed, F. A. and Langdon, T. G.Metall. Trans. 5 2339 (1974).CrossRefGoogle Scholar
l0Ruano, O. A. and Sherby, O.D.Mater. Sci. Eng. 56 167 (1982).CrossRefGoogle Scholar
11Frost, H. J. and Ashby, M. F.Deformation-Mechanism Maps (Pergamon Press, 1982).Google Scholar
12Walser, B. and Sherby, O.D.Scripta Metall. 16 213 (1982).CrossRefGoogle Scholar
13Nabarro, F. R. N. in Report of the Conference on the Strength of Solids (Physical Society, London, 1948), p. 75.Google Scholar
14Herring, C.J. Appl. Phys. 21 437 (1950).CrossRefGoogle Scholar
15Coble, R. L.J. Appl. Phys. 34 1679 (1963).CrossRefGoogle Scholar
16Luthy, H.White, R.A. and Sherby, O.D.Mater. Sci. Eng. 39 211 (1979).CrossRefGoogle Scholar
17Ruano, O. A. and Sherby, O.D.Mater. Sci. Eng. 51 9 (1981).CrossRefGoogle Scholar
18Harper, J. and Dorn, J.E.Acta Metall. 5 564 (1957).CrossRefGoogle Scholar
19Sherby, O.D.Klundt, R.H. and Miller, A.K.Metall. Trans. A8A, 843 (1977).CrossRefGoogle Scholar
20Koester, W.Z. Metallkd. 39 1 (1948).Google Scholar
21Lundy, T.S. and Murdock, J.F.J. Appl. Phys. 33 1671 (1968).CrossRefGoogle Scholar
22Gifkins, R.C.Metall. Trans. A7A, 1225 (1976).CrossRefGoogle Scholar
23Matsuki, K.Uetani, Y.Yamada, M. and Murakami, Y.Met. Sci. 10 235 (1976).CrossRefGoogle Scholar
24Matsuki, K.Minami, K.Tokizawa, M. and Murakami, Y.Met. Sci. 13 619 (1979).CrossRefGoogle Scholar
25Matsuki, K. and Yamada, M.J. Japan Inst. Met. 37 448 (1973).CrossRefGoogle Scholar
26Matsuki, K.Morita, H.Yamada, M. and Murakami, Y.Met. Sci. 11 156 (1977).CrossRefGoogle Scholar