Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-24T20:30:32.091Z Has data issue: false hasContentIssue false

Structural characterization of highly textured AlN thin films grown on titanium

Published online by Cambridge University Press:  31 January 2011

Gonzalo F. Iriarte*
Affiliation:
Instituto de Sistemas Optoelectrónicos y Microtecnología (ISOM)–Universidad Politécnica de Madrid, Ciudad Universitaria s/n, E-28040 Madrid, Spain
*
a)Address all correspondence to this author. e-mail: gonzalo.fuentes@upm.es
Get access

Abstract

A pulsed direct current (dc) reactive ion beam sputtering system has been used to synthesize highly c-axis oriented aluminum nitride (AlN) thin films on (0002)-oriented 200-nm thin titanium layers deposited on a Si-(111) substrate. After a systematic study of the processing variables, high-quality polycrystalline films with preferred c-axis orientation have been grown successfully on the Ti (0002) layer using an Al target under a N2/(N2 + Ar) ratio of 70%, a 2 mTorr processing pressure, and keeping the temperature of the substrate holder at ambient temperature (no substrate heating). The crystalline quality of the AlN and the underlaying Ti thin films was characterized by high-resolution x-ray diffraction. Best ω- full width at half maximum values of the (0002) reflection for 1-μm thin AlN layers are 0.56°. Hence, the AlN layers show a high degree of orientation in the (0002) direction, which directly translates into a high Q value piezoelectric response. Atomic force microscopy measurements were used to study the surface morphology of the Ti layer in an attempt to understand its impact on the quality of the AlN films deposited on top of them. Transmission electron microscopy cross-section analysis has been carried out to investigate the AlN/Ti interface. Our observations reveal the presence of crack-free layers with a smooth surface and extremely low defect density. Even local epitaxy phenomena have been identified at the AlN/Ti interface. The processing conditions used to synthesize AlN layers on Ti at room temperature are efficient in reducing the dislocation density and in-plane residual strain. Such AlN/Ti bilayers can be applied to manufacture novel electroacoustic device structures (such as bulk acoustic wave filters) on silicon substrates in further investigations.

Type
Articles
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Ieki, H., Tanaka, H., Koike, J., Nishikawa, T.Microwave low insertion loss SAW filter by using ZnO/sapphire substrate with Ni dopantIEEE MTT-S International Microwave Symposium Digest (San Francisco, CA 1996)Google Scholar
2.Ieki, H., Kadota, M.ZnO thin films for high frequency SAW devicesProc. IEEE Ultrasonics Symposium (Caesars Tahoe, NV 1999)Google Scholar
3.Wasa, K., Hayakawa, S.ZnO thin film SAW filter. Oyo Buturi 50, 580 (1981)Google Scholar
4.Hachigo, A., Malocha, D.C., Richie, S.M.ZnO/diamond/Si SAW filter properties including velocity dispersionProc. IEEE Ultrasonics Symposium (Seattle, WA 1995)Google Scholar
5.Hachigo, A., Richie, S.M., Malocha, D.C.Characteristics of ZnO/diamond/Si SAW resonatorsProc. IEEE International Frequency Control Symposium (Honolulu, HI 1996)Google Scholar
6.Pereira da Cunha, M., Adler, E.L., Malocha, D.C.HVPSAW sensitivity to film properties for ZnO/diamond/Si structuresProc. IEEE Ultrasonics Symposium (San Juan, Puerto Rico 2000)Google Scholar
7.Nakahata, H., Kitabayashi, H., Uemura, T., Hachigo, A., Higaki, K., Fujii, S., Seki, Y., Yoshida, K., Shikata, S.Study on surface acoustic wave characteristics of SiO2 /interdigital-transducer/ZnO/diamond structure and fabrication of 2.5 GHz narrow band filter. Jpn. J. Appl. Phys., Part 1 37, 2918 (1998)CrossRefGoogle Scholar
8.Yamanouchi, K., Sakurai, N., Satoh, T.SAW propagation characteristics and fabrication technology of piezoelectric thin film/diamond structureProc. IEEE Ultrasonics Symposium (Montreal, Québec, Canada 1989)Google Scholar
9.Shikata, S.Diamond SAW filter for 2.5-Gbps optical communications. SEI Tech. Review 47, 48 (1999)Google Scholar
10.Shikata, S.High frequency SAW filter on diamondIEEE MTT-S International Microwave Symposium Digest (New York 1997)829832Google Scholar
11.Assouar, M.B., Elmazria, O., Le Brizoual, L., Belmahi, M., Alnot, P.Growth of piezoelectric aluminum nitride for layered SAW devicesProc. IEEE Frequency Control Symposium (New Orleans, LA 2002)Google Scholar
12.Ishihara, M., Nakamura, T., Kokai, F., Koga, Y.Preparation of AlN and LiNbO3 thin films on diamond substrates by sputtering method. Diamond Relat. Mater. 11, 408 (2002)Google Scholar
13.Engelmark, F., Fuentes, G., Kaardjiev, I.V., Harsta, A., Smith, U., Berg, S.Synthesis of highly oriented piezoelectric AlN films by reactive sputter deposition. J. Vac. Sci. Technol., A 18, 1609 (2000)CrossRefGoogle Scholar
14.Engelmark, F., Iriarte, G.F., Katardjiev, I.V., Ottosson, M., Muralt, P., Berg, S.Structural and electroacoustic studies of AlN thin films during low temperature radio frequency sputter deposition. J. Vac. Sci. Technol., A 19, 2664 (2001)CrossRefGoogle Scholar
15.Hanabusa, T., Tominaga, K., Fujiwara, H.X-ray residual stress analysis of aluminum nitride film with c-axis orientation on glass substrate. J. Soc. Mater. Sci. Jpn. 42, 90 (1993)CrossRefGoogle Scholar
16.Lim, W.T., Son, B.K., Kang, D.H., Lee, C.H.Structural properties of AlN films grown on Si, Ru/Si and ZnO/Si substrates. Thin Solid Films 382, 56 (2001)CrossRefGoogle Scholar
17.Wang, Y.Y., Wong, M.S., Chia, W.J., Rechner, J., Sproul, W.D.Synthesis and characterization of highly textured polycrystalline AlN/TiN superlattice coatings. J. Vac. Sci. Technol., A 16, 3341 (1998)CrossRefGoogle Scholar
18.Dubois, M-A., Muralt, P.Stress and piezoelectric properties of aluminum nitride thin films deposited onto metal electrodes by pulsed direct current reactive sputtering. J. Appl. Phys. 89, 6389 (2001)CrossRefGoogle Scholar
19.Dubois, M-A., Muralt, P., Sagalowicz, L.Aluminum nitride thin films for high frequency applications. Ferroelectrics 224, 243 (1999)Google Scholar
20.Lobl, H.P., Klee, M., Milsom, R., Dekker, R., Metzmacher, C., Brand, W., Lock, P.Materials for bulk acoustic wave (BAW) resonators and filters. J. Eur. Ceram. Soc. 21, 2633 (2001)CrossRefGoogle Scholar
21.Iriarte, G.F., Bjurstrom, J., Westlinder, J., Engelmark, F., Katardjiev, I.V.Synthesis of c-axis-oriented AlN thin films on high-conducting layers: Al, Mo, Ti, TiN, and Ni. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 52, 1170 (2005)CrossRefGoogle Scholar
22.Lobl, H.P., Klee, M., Wunnicke, O., Kiewitt, R., Dekker, R., Pelt, E.V.Piezo-electric AlN and PZT films for micro-electronic applicationsProc. IEEE Ultrasonics Symposium (Caesars Tahoe, NV 1999)Google Scholar
23.Dubois, M-A., Muralt, P., Matsumoto, H., Plessky, V.Solidly mounted resonator based on aluminum nitride thin filmProc. IEEE Ultrasonics Symposium (Sendai, Japan 1998)Google Scholar
24.Davies, P.L., Gather, U., Meise, M., Mergel, D., Mildenberger, T.Residual-based localization and quantification of peaks in x-ray diffractograms. Ann. Appl. Stat. 2, 861 (2008)Google Scholar
25.The International Center for Diffraction Data (2009) Available at: http://www.icdd.com/Google Scholar
26.Lee, H., Kim, G., Hong, S., Lee, K., Yong, Y., Chun, C., Lee, J.Influence of sputtering pressure on the microstructure evolution of AlN thin-films prepared by reactive sputtering. Thin Solid Films 261, 148 (1995)CrossRefGoogle Scholar