Hostname: page-component-586b7cd67f-dsjbd Total loading time: 0 Render date: 2024-11-24T20:41:00.883Z Has data issue: false hasContentIssue false

Structure and physical properties of sodium antimony germanate glasses

Published online by Cambridge University Press:  31 January 2011

M. Pal
Affiliation:
MLS Lab, Indian Association for the Cultivation of Science, Calcutta 700 032, India
Get access

Abstract

The structure and physical properties of sodium antimony germanate glasses with compositions 10Na2O − xSb2O3 − (90 − x)GeO2, x = 10−30 mol%, prepared by the melt-quenched route have been studied. It is observed from x-ray diffraction, SEM, density and oxygen molar volume, infrared (IR), differential thermal analysis (DTA), and optical absorption that single phase homogeneous glasses with a random network structure can be obtained in this system. The strength and connectivity of the glass network increase with GeO2 content. The main Ge−O stretching vibration also shifts to higher wavelength side. Two oxidation states of antimony, Sb3+ and Sb5+, are present, while the so-called “germanate anomaly” is absent in these glasses. This study discusses the probable structural reasons behind this type of behavior of these glasses.

Type
Articles
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Higby, P. L. and Aggarwal, I.D., J. Non-Cryst. Solids 163, 303 (1993).CrossRefGoogle Scholar
2.Shelby, J. E. and Ruller, J., Phys. Chem. Glasses 28, 262 (1987).Google Scholar
3.Murthy, M.K. and Ip, J., Nature (London) 201, 285 (1964).CrossRefGoogle Scholar
4.Kingery, W. D., Bowen, H. K., and Uhlmann, D. R., Introduction to Ceramics (Wiley, New York, 1975), p. 110.Google Scholar
5.Sakka, S. and Kamiya, K., J. Non-Cryst. Solids 49, 103 (1982).CrossRefGoogle Scholar
6.Shelby, J. E., J. Am. Ceram. Soc. 66, 414 (1983).CrossRefGoogle Scholar
7.Shelby, J. E., J. Am. Ceram. Soc. 67, 557 (1984).CrossRefGoogle Scholar
8.Riebling, E. F., J. Am. Ceram. Soc. 56, 303 (1973).CrossRefGoogle Scholar
9.Fairwealthev, M.J. and Murthy, M.K., J. Am. Ceram. Soc. 5/6, 349 (1973).Google Scholar
10.Murthy, M.K. and Emery, K., Phys. Chem. Glasses 8, 26 (1967).Google Scholar
11.Merzbacher, C. I. and McKeown, D.A., J. Non-Cryst. Solids 162, 81 (1993).CrossRefGoogle Scholar
12.Sakuri, Y. and Yamak, J., J. Electrochem. Soc. 132, 512 (1985).CrossRefGoogle Scholar
13.Ghosh, A., J. Appl. Phys. 64, 2652 (1988).CrossRefGoogle Scholar
14.Sayer, M. and Mansingh, A., Phys. Rev. B 6, 4629 (1972).Google Scholar
15.Austin, I. G. and Mott, N.F., Adv. Phys. 18, 41 (1969).CrossRefGoogle Scholar
16.Datta, A., Giri, A.K., and Chakravorty, D., Phys. Rev. B 47, 16242 (1993).CrossRefGoogle Scholar
17.Kumar, D. and Chakravorty, D., J. Phys. D 13, 1331 (1980).CrossRefGoogle Scholar
18.Shelby, J. E., J. Am. Ceram. Soc. 57, 436 (1975).CrossRefGoogle Scholar
19.Datta, A., Giri, A.K., and Chakravorty, D., J. Phys. Condens. Matter 4, 1783 (1992).Google Scholar
20.Hazra, S. and Ghosh, A., J. Mater. Res. 10, 2374 (1995).CrossRefGoogle Scholar
21.Drake, C. F., Stephan, J. A., and Yates, B., J. Non-Cryst. Solids 28, 61 (1978).CrossRefGoogle Scholar
22.Riebling, E. F., J. Mater. Sci. 9, 753 (1974).Google Scholar
23.Evstropiev, K. S. and Ivanov, A. O., in Advances in Glass Technology, Part 2 (1963), pp. 7985.Google Scholar
24.Riebling, E. F., J. Mater. Sci. 7, 40 (1972).Google Scholar
25.Merzbacher, C. I., Phys. Chem. Glasses 33, 233 (1992).Google Scholar