Hostname: page-component-7479d7b7d-c9gpj Total loading time: 0 Render date: 2024-07-12T17:17:37.018Z Has data issue: false hasContentIssue false

Structure and surface morphology of highly conductive RuO2 films grown on MgO by oxygen-plasma-assisted molecular beam epitaxy

Published online by Cambridge University Press:  31 January 2011

Y. Gao*
Affiliation:
Pacific Northwest National Laboratory, P.O. Box 999, MS K2–12, Richland, Washington 99352
G. Bai
Affiliation:
Argonne National Laboratory, 9700 S. Cass Ave., Argonne, Illinois 60439
Y. Liang
Affiliation:
Pacific Northwest National Laboratory, P.O. Box 999, MS K2–12, Richland, Washington 99352
G. C. Dunham
Affiliation:
Pacific Northwest National Laboratory, P.O. Box 999, MS K2–12, Richland, Washington 99352
S. A. Chambers
Affiliation:
Pacific Northwest National Laboratory, P.O. Box 999, MS K2–12, Richland, Washington 99352
*
a)Author to whom correspondence should be addressed.
Get access

Abstract

Metallic RuO2(110) thin films were grown by oxygen-plasma-assisted molecular beam epitaxy (MBE) on MgO(100) and (110) at 425 °C. RuO2 films on MgO(100) are epitaxial with two variants, while RuO2 films on MgO(110) are highly oriented with the (110) face parallel to the substrate surface. The two variants in the RuO2(110) epitaxial films resulted in a twofold mosaic microstructure. The RuO2(110) epitaxial films are very smooth and exhibit a low resistivity of ∼ 36 μΩ-cm. In contrast, the RuO2(110) textured films are very rough, and consist of small grains with a poor in-plane alignment. A slight higher resistivity (49 μΩ-cm) was found for the RuO2 (110) textured films grown on MgO(110).

Type
Articles
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Ryden, W. D., Lawson, A. W., and Saetain, C. C., Phys. Rev. B 1, 1494 (1970).CrossRefGoogle Scholar
2.Electrodes of Conductive Metallic Oxides, edited by Trasatti, S. (Elsevier, New York, 1980).Google Scholar
3.Vest, R. W., Ceram. Bull. 65, 631 (1986).Google Scholar
4.Kolawa, E., So, F. C. T., Pan, E. T-S., and Nicolet, M-A., Appl. Phys. Lett. 50, 854 (1987).Google Scholar
5.Krusin-Elbaum, L., Wittmer, M., and Yee, D. S., Appl. Phys. Lett. 50, 1879 (1987).CrossRefGoogle Scholar
6.Bursill, L. A., Reaney, M., Vijay, D. P., and Desu, S. B., J. Appl. Phys. 75, 1521 (1994).CrossRefGoogle Scholar
7.Takemura, K., Sakuma, T., and Miyasaka, Y., Appl. Phys. Lett. 64, 2967 (1994).Google Scholar
8.Al-Shareef, H. N., Bellur, K. R., Kingon, A. I., and Auciello, O., Appl. Phys. Lett. 66, 239 (1995).CrossRefGoogle Scholar
9.Green, M. L., Gross, M. E., Papa, L. E., Schnoes, K. J., and Brasen, D., J. Electrochem. Soc. 132, 2677 (1985).Google Scholar
10.Wang, Q., Gladfelter, W. L., Evans, D. F., Fan, Y., and Franciosi, A., J. Vac. Sci. Technol. A 14, 747 (1996).CrossRefGoogle Scholar
11.Si, J. and Desu, S. B., J. Mater. Res. 8, 2644 (1993).Google Scholar
12.Jia, Q. X., Wu, X. D., Song, G., and Foltyn, S. R., J. Vac. Sci. Technol. A 14, 1107 (1996).Google Scholar
13.Chambers, S. A., Tran, T. T., and Hileman, T. A., J. Mater. Res. 9, 2944 (1994).CrossRefGoogle Scholar
14.Lind, D. M., Berry, S. D., Chern, G., Mathias, H., and Testardi, L. R., Phys. Rev. B 45, 1838 (1992).Google Scholar
15.Kim, Y. J., Gao, Y., and Chambers, S. A., Surf. Sci. 371, 358 (1997).Google Scholar
16.Gao, Y. and Chambers, S. A., J. Cryst. Growth (in press).Google Scholar
17.Gao, Y., Liang, Y., and Chambers, S. A., Surf. Sci. 348, 17 (1996).Google Scholar
18.Gao, Y., unpublished results.Google Scholar
19.Aspnes, D. E., Theeten, J. B., and Hottier, F., Phys. Rev. B 20, 3292 (1979).Google Scholar
20.Kern, R., Lay, G. Le, and Metois, J. J., in Current Topics in Materials Science, edited by Kaldis, E. (North-Holland, Amsterdam, 1979), p. 282.Google Scholar