Hostname: page-component-586b7cd67f-vdxz6 Total loading time: 0 Render date: 2024-11-23T07:33:48.507Z Has data issue: false hasContentIssue false

Surface microstructure of Zr41.25Ti13.75Cu12.5Ni10.0Be22.5, a bulk metallic glass

Published online by Cambridge University Press:  31 January 2011

M.A. LaMadrid
Affiliation:
Division of Engineering and Applied Science, California Institute of Technology, Pasadena, California 91109
S.D. O'Connor
Affiliation:
Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91109
A. Peker
Affiliation:
Division of Engineering and Applied Science, California Institute of Technology, Pasadena, California 91109
W.L. Johnson
Affiliation:
Division of Engineering and Applied Science, California Institute of Technology, Pasadena, California 91109
J.D. Baldeschwieler
Affiliation:
Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91109
Get access

Abstract

The surface of Zr41.25Ti13.75Cu12.5Ni10.0Be22.5, a bulk metallic glass prepared by RF induction melting, has been imaged using atomic force microscopy. The untreated surfaces were very smooth; features were no higher than 3 nm over a 10 × 10 μm region, comparable to many polished surfaces. Two types of microstructure were also observed; periodic striations forming either a striped or a checkered structure were present, with wavelengths between 1 and 2 μm, and amplitude of approximately 2 nm; in other cases, “cracked mud”-like patterns were observed. These microstructures could be related to strain-induced surface roughening; preliminary calculations are presented that are consistent with this hypothesis.

Type
Articles
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Peker, A. and Johnson, W. L., Appl. Phys. Lett. 63, 2342 (1993).CrossRefGoogle Scholar
2.LaMadrid, M. A., Peker, A., Housley, R., Rice, A., and Johnson, W. L., unpublished.Google Scholar
3.Binnig, G., Quate, C. F., and Gerber, C., Phys. Rev. Lett. 56, 930 (1986).CrossRefGoogle Scholar
4.Albrecht, T. R. and Quate, C. F., J. Appl. Phys. 62, 2599 (1987).CrossRefGoogle Scholar
5.Meyer, G. and Amer, N. M., Appl. Phys. Lett. 57, 2089 (1990).CrossRefGoogle Scholar
6. Topometrix, Santa Clara, CA.Google Scholar
7.Baselt, D. R., Clark, S. M., Youngquist, M. G., Spence, C. F., and Baldeschwieler, J. D., Rev. Sci. Instrum. 64, 1874 (1993).CrossRefGoogle Scholar
8.Asaro, R. J. and Tiller, W. A., Metall. Trans. 3, 1789 (1972).CrossRefGoogle Scholar
9.Srolovitz, D. J., Acta. Metall. 37, 621 (1989).CrossRefGoogle Scholar
10.Nozieres, P., J. Phys. I 3, 681 (1993).Google Scholar
11.Grinfeld, M. A., Sov. Phys. Dokl. 31, 831 (1987).Google Scholar
12.Yang, W. H. and Srolovitz, D. J., Phys. Rev. Lett. 71, 1593 (1993).CrossRefGoogle Scholar
13.Spencer, B. J., Voorhees, P. W., and Davis, S.H., Phys. Rev. Lett. 67, 3696 (1991).CrossRefGoogle Scholar
14.Freund, L. B. and Jonsdottir, F., J. Mech. Phys. Solids 41, 1245 (1993).CrossRefGoogle Scholar
15.Gao, H. J., J. Mech. Phys. 39, 443 (1991).CrossRefGoogle Scholar
16.Tersoffand, J., LeGoues, F. K., Phys. Rev. Lett. 72, 3570 (1994).CrossRefGoogle Scholar
17.Bruck, H.A., Christman, T., Rosakis, A. J., and Johnson, W. L., Scripta Metall. Mater. 30, 429 (1994).CrossRefGoogle Scholar
18. The surface tensions of the component metals range from 1–2 J/m2 at their respective melting points; Brandes, E. and Brook, G., Smithells Metals Reference Book (1992).Google Scholar
19.Bakke, E. and Johnson, W. L., private communication.Google Scholar
20.Geyer, U., Schneider, S., Johnson, W. L., and Tombrello, T., unpublished.Google Scholar
21.Johnson, W. L., in Intermetallic Compounds, edited by West-brook, J.H. and Fleischer, R. L. (John Wiley and Sons Ltd., New York, 1994), Chap. 29.Google Scholar
22.Bodensohn, J., Nicolai, K., and Leiderer, P., Z. Phys. B 64, 55 (1986).CrossRefGoogle Scholar
23.Torii, R.H. and Balibar, S., J. Low-Temp. Phys. 89, 391 (1992).CrossRefGoogle Scholar
24.Venables, J.A., Spiller, G. D. T., and Hanbucken, M., Rep. Prog. Phys. 47, 399 (1984).CrossRefGoogle Scholar
25.Jesson, D. E., Pennycook, S. J., Baribeau, J. M., and Houghton, D. C., Phys. Rev. Lett. 71, 1744 (1993).CrossRefGoogle Scholar
26.Cullis, A. G., Robbins, D.J., Pidduck, A.J., and Smith, P.W., J. Cryst. Growth 123, 333 (1992).CrossRefGoogle Scholar
27.Berrehar, J., Caroli, C., Lapersonne-Meyer, C., and Schott, M., Phys. Rev. B 46, 13487 (1992).CrossRefGoogle Scholar
28.Guyer, J. E. and Voorhees, P.W., Phys. Rev. Lett. 74, 4031 (1995).CrossRefGoogle Scholar
29.Spencer, B. J. and Meiron, D.J., Acta Metall. Mater. 42, 3629 (1994).CrossRefGoogle Scholar