Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-28T08:34:24.307Z Has data issue: false hasContentIssue false

Synthesis and characterization of multiphase bioactive glass-ceramics in the CaO–MgO–SiO2 system with B2O3 additive

Published online by Cambridge University Press:  31 January 2011

Xianchun Chen
Affiliation:
College of Materials Science and Engineering, Sichuan University, Chengdu 610064, People’s Republic of China
Yan Wei
Affiliation:
College of Materials Science and Engineering, Sichuan University, Chengdu 610064, People’s Republic of China
Zhongbing Huang
Affiliation:
College of Materials Science and Engineering, Sichuan University, Chengdu 610064, People’s Republic of China
Yunqing Kang
Affiliation:
College of Materials Science and Engineering, Sichuan University, Chengdu 610064, People’s Republic of China
Guangfu Yin*
Affiliation:
College of Materials Science and Engineering, Sichuan University, Chengdu 610064, People’s Republic of China
*
a)Address all correspondence to this author. e-mail: nic0700@scu.edu.cn
Get access

Abstract

A glass-ceramic (GC0) with nominal composition of 51.2% CaO–12.1% MgO–36.7% SiO2 (wt%) was synthesized. Then multiphase glass-ceramics of MGC1 and MGC2 were obtained by adding 1 and 2 wt% B2O3 to GC0 followed by thermal treatment. The bending strength of MGC1 was the highest, about 89.46 MPa, and the coefficient of thermal expansion was 10.67 × 10−6 °C−1, closer to that of Ti–6Al–4V alloy (10.03 × 10−6 °C−1). X-ray diffraction analysis confirmed that MGC1 was predominantly composed of akermanite, merwinite, and small amounts of dicalcium silicate crystalline phases. The bioactivity and cytocompatibility in vitro of MGC1 were detected by investigating the bonelike apatite-formation ability in simulated body fluid (SBF) and osteoblast morphology and viability. The results showed that MGC1 possessed bonelike apatite-formation ability in SBF and could release ionic products to significantly stimulate cell growth and viability. Furthermore, osteoblasts adhered and spread well on MGC1, indicating good bioactivity and potential cytocompatibility.

Type
Articles
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Hench, L.L., Splinter, R.J., Allen, W.C., Greenlee, T.K.: Mechanisms of interfacial bonding between ceramics and bone. J. Biomed. Mater. Res. Symp. 2, 117 1972Google Scholar
2Hench, L.L.: Bioceramics. J. Am. Ceram. Soc. 81, 1705 1998CrossRefGoogle Scholar
3Hench, L.L., Wilson, J.: An Introduction to Bioceramics, 1st ed.World Scientific, Singapore 1993 6374CrossRefGoogle Scholar
4Kokubo, T., Shigematsu, M., Nagashima, Y., Tashiro, M., Nakamura, T., Yamamuro, T., Higashi, S.: Apatite-and wollastonite-containing glass ceramics for prosthetic application. Bull. Inst. Chem. Res. 60, 260 1982Google Scholar
5Oliveira, J.M., Correia, R.N., Fernandes, M.H.: Surface modifications of a glass and a glass-ceramic of the MgO–3CaO⋅ P2O5–SiO2 system in a simulated body fluid. Biomaterials 16, 849 1995CrossRefGoogle Scholar
6Wu, C.T., Chang, J., Wang, J.Y., Ni, S.Y., Zhai, W.Y.: Preparation and characteristics of a calcium magnesium silicate (bredigite) bioactive ceramic. Biomaterials 26, 2925 2005CrossRefGoogle ScholarPubMed
7Nonami, T., Tsutsumi, S.: Study of diopside ceramics for biomaterials. J. Mater. Sci.-Mater. Med. 10, 475 1999CrossRefGoogle ScholarPubMed
8Tulyaganov, D.U., Agathopoulos, S., Ventura, J.M., Karakassides, M.A., Fabrichnaya, O., Ferreira, J.M.F.: Synthesis of glass-ceramics in the CaO–MgO–SiO2 system with B2O3, P2O5, Na2O and CaF2 additives. J. Eur. Ceram. Soc. 26, 1463 2006CrossRefGoogle Scholar
9Liu, Y., Sheng, X.X., Dan, X.H., Xiang, Q.J.: Preparation of mica/apatite glass-ceramics biomaterials. Mater. Sci. Eng., C 26, 1390 2006CrossRefGoogle Scholar
10Salinas, A.J., Roman, J., Vallet-Regi, M., Oliveira, J.M., Correia, R.N., Fernandes, M.H.: In vitro bioactivity of glass and glass-ceramics of the 3CaO⋅P2O5–CaO⋅SiO2– CaO⋅MgO⋅2SiO2 system. Biomaterials 21, 251 2000CrossRefGoogle Scholar
11Siriphannon, P., Kameshima, Y., Yasumori, A., Okadaa, K., Hayashi, S.: Formation of hydroxyapatite on CaSiO3 powders in simulated body fluid. J. Eur. Ceram. Soc. 22, 511 2002CrossRefGoogle Scholar
12Liu, X.Y., Ding, C.X., Chu, P.K.: Mechanism of apatite formation on wollastonite coatings in simulated body fluids. Biomaterials 25, 1755 2004CrossRefGoogle ScholarPubMed
13Wu, C.T., Chang, J., Ni, S.Y., Wang, J.Y.: In vitro bioactivity of akermanite ceramics. J. Biomed. Mater. Res. 76A, 73 2006CrossRefGoogle Scholar
14Agathopoulos, S., Tulyaganov, D.U., Valério, P., Ferreira, J.M.F.: A new model formulation of the SiO2–Al2O3–B2O3–MgO–CaO– Na2O–F glass-ceramics. Biomaterials 26, 2255 2005CrossRefGoogle ScholarPubMed
15Gou, Z.R., Chang, J., Zhai, W.Y.: Preparation and characterization of novel bioactive dicalcium silicate ceramics. J. Eur. Ceram. Soc. 25, 1507 2005CrossRefGoogle Scholar
16Ou, J., Yin, G.F., Zhou, D.L., Chen, X.C., Yao, Y.D., Yang, W.Z., Wu, B.L., Xue, M., Cui, J., Zhu, H.Y., Kang, Y.Q.: Preparation of Merwinite with apatite-forming ability by sol-gel process. Key Eng. Mater. 330–332, 67 2007CrossRefGoogle Scholar
17Torres, F.J., Alarcon, J.: Mechanism of crystallization of pyroxene-based glass–ceramic glazes. J. Non-Cryst. Solids 34, 45 2004CrossRefGoogle Scholar
18Shyu, J.J., Lee, H.H.: Sintering crystallization and properties of B2O3/P2O5 doped Li2O ⋅ Al2O3 ⋅ 4SiO2 glass-ceramics. J. Am. Ceram. Soc. 78, 2161 1995CrossRefGoogle Scholar
19Kokubo, T.: Surface chemistry of bioactive glass-ceramics. J. Non-Cryst. Solids 120, 138 1990CrossRefGoogle Scholar
20Liu, Q., Ding, J., Mante, F.K., Wunder, S.L., Baran, G.R.: The role of surface functional groups in calcium phosphate nucleation on titanium foil: A self-assembled monolayer technique. Biomaterials 23, 3103 2002CrossRefGoogle ScholarPubMed
21Jung, I-H., Decterov, S.A., Pelton, A.D.: Critical thermodynamic evaluation and optimization of the CaO–MgO–SiO2 system. J. Eur. Ceram. Soc. 25, 313 2005CrossRefGoogle Scholar
22Huang, W., Hillert, M., Wang, X.: Thermodynamic assessment of CaO–MgO–SiO2 system. Metal. Mater. Trans. A 26, 2293 1995CrossRefGoogle Scholar
23Brink, M., Turunen, T., Happonen, R-P., Antti, Y-U.: Compositional dependence of bioactivity of glasses in the system Na2O–K2O–MgO–CaO–B2O3–P2O5–SiO2. J. Biomed. Mater. Res. 37, 114 19973.0.CO;2-G>CrossRefGoogle ScholarPubMed
24Singh, K., Bahadur, D.: Characterization of SiO2–Na2O– Fe2O3–CaO–P2O5–B2O3 glass ceramics. J. Mater. Sci.-Mater. Med. 10, 481 1999CrossRefGoogle ScholarPubMed
25Hench, L.L., Splinter, R.J., Allen, W.C., Greenlee, T.K.: Bonding mechanisms at the interface ceramic prothetic materials. J. Biomed. Mater. Res. Symp. 36, 117 1971CrossRefGoogle Scholar
26Filho, O.P., LaTorre, G.P., Hench, L.L.: Effect of crystallization on apatite-layer formation of bioactive glass 45S5. J. Biomed. Mater. Res. 30, 509 19963.0.CO;2-T>CrossRefGoogle Scholar
27Xynos, I.D., Edgar, A.J., Buttery, L.D., Hench, L.L., Polak, J.M.: Gene expression profiling of human osteoblasts following treatment with ionic products of bioglass 45S5 dissolution. J. Biomed. Mater. Res. 55, 151 20013.0.CO;2-D>CrossRefGoogle ScholarPubMed
28Juin, P., Pelletier, M., Oliver, L., Tremblais, K., Gregoire, M., Meflah, K., Vallette, F.M.: Induction of a caspase-3-like activity by calcium in normal cytosolic extract triggers nuclear apoptosis in a cell free system. J. Biol. Chem. 270, 3203 1995Google Scholar
29Gough, J.E., Notingher, I., Hench, L.L.: Osteoblast attachment and mineralized nodule formation on rough and smooth 45S5 bioactive glass monoliths. J. Biomed. Mater. Res. 68, 640 2004CrossRefGoogle ScholarPubMed
30Valerio, P., Pereira, M.M., Goes, A.M., Leite, M.F.: The effect of ionic products from bioactive glass dissolution on osteoblast proliferation and collagen production. Biomaterials 25, 2941 2004CrossRefGoogle ScholarPubMed
31Gough, J.E., Clupper, D.C., Hench, L.L.: Osteoblast responses to tape cast and sintered bioactive glass ceramics. J. Biomed. Mater. Res. 69, 621 2004CrossRefGoogle ScholarPubMed
32Zreiqat, H., Howlett, C.R., Zannettino, A., Evans, P., Schulze-Tanzil, G., Knabe, C., Shakibae, M.: Mechanisms of magnesium-stimulated adhesion of osteoblastic cells to commonly used orthopaedic implants. J. Biomed. Mater. Res. 62, 175 2002CrossRefGoogle ScholarPubMed