Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-20T09:35:48.411Z Has data issue: false hasContentIssue false

Synthesis and characterization of nonconventional nickel-titania glasses by sol-gel route

Published online by Cambridge University Press:  31 January 2011

T. K. Kundu
Affiliation:
Indian Association for the Cultivation of Science, Jadavpur, Calcutta 700 032, India
D. Chakravorty
Affiliation:
Indian Association for the Cultivation of Science, Jadavpur, Calcutta 700 032, India
Get access

Abstract

Glasses in the NiO–TiO2 system in the composition range 15 to 25 mol% of NiO have been synthesized by the sol-gel technique by heat treatment of the precursor sol at 500°C. The glass structure is built up by crosslinking of two units, namely TiO6 octahedron and NiO3 triangle. Glassy structure is confirmed at a microscopic level by scanning electron microscopy. An increase in the values of peak-to-peak width of electron paramagnetic resonance with increasing concentration of Ni2+ is attributed to an enhanced interaction between neighboring paramagnetic Ni2+ ions.

Type
Articles
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Sakka, S. and Kamiya, K., J. Non-Cryst. Solids 42, 403 (1980).CrossRefGoogle Scholar
2.Yoldas, B. E., J. Mater. Sci. 14, 1843 (1979).Google Scholar
3.Xu, W., Dai, S., Toth, L. M., Delcul, G. D., and Peterson, J.R., J. Non-Cryst. Solids 194, 235 (1996).CrossRefGoogle Scholar
4.Zelinski, B. J. J. and Uhlmann, D. R., J. Phys. Chem. Solids 45, 1069 (1984).CrossRefGoogle Scholar
5.Orignac, X., Du, X. M., Barbier, D., and Almeida, R.M., Appl. Phys. Lett. 69, 895 (1996).Google Scholar
6.Ghosh, A. and Chakravorty, D., Appl. Phys. Lett. 59, 855 (1991).CrossRefGoogle Scholar
7.Brandon, T. S. and Bray, K. L., J. Non-Cryst. Solids 197, 136 (1996).Google Scholar
8.Makishima, A., Asami, M., and Wada, K., J. Non-Cryst. Solids 121, 310 (1990).CrossRefGoogle Scholar
9.Doeuff, S., Henry, M., Sanchez, C., and Livage, L., J. Non-Cryst. Solids 89, 84 (1987).Google Scholar
10.Yoko, I., Yuasa, A., Kamiya, K., Tanaka, K., and Sakka, S., Nippon Kagaku Kaishi 11, 1946 (1987).CrossRefGoogle Scholar
11.Zabarescu, M., Pirlog, C., Gartner, M., and Vasilescu, A., J. Non-Cryst. Solids 160, 162 (1993).Google Scholar
12.Roy, B. and Chakravorty, D., J. Phys.: Condens. Matter 2, 9323 (1990).Google Scholar
13.Jijian, C. and Dongwei, W., J. Non-Cryst. Solids 100, 288 (1988).Google Scholar
14.Nyquist, R. A. and Kagel, R. O., Infrared Spectra of Inorganic Compounds (Academic Press, New York, London, 1971).CrossRefGoogle Scholar
15.Jijian, C. and Wei, C., J. Non-Cryst. Solids 80, 135 (1986).CrossRefGoogle Scholar
16.Livage, J., Pineau, P., Leroy, M. C., and Michand, M., Phys. Status Solidi A 39, 73 (1977).CrossRefGoogle Scholar