Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-28T15:47:00.324Z Has data issue: false hasContentIssue false

Synthesis and crystal chemistry of the new compounds GdBa4Cu3O8.5+δ and DyBa4Cu3O8.5+δ

Published online by Cambridge University Press:  31 January 2011

Y. T. Zhu
Affiliation:
Mail Stop K763, Materials Science and Technology Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545
E. J. Peterson
Affiliation:
Mail Stop K763, Materials Science and Technology Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545
P. S. Baldonado
Affiliation:
Mail Stop K763, Materials Science and Technology Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545
J. Y. Coulter
Affiliation:
Mail Stop K763, Materials Science and Technology Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545
D. E. Peterson
Affiliation:
Mail Stop K763, Materials Science and Technology Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545
F. M. Mueller
Affiliation:
Mail Stop K763, Materials Science and Technology Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545
Get access

Abstract

Two new compounds, GdBa4Cu3O8.5+δ (Gd143) and DyBa4Cu3O8.5+δ (Dy143), were synthesized from precursors Gd2O3, Dy2O3, BaO2, and CuO at 1000 °C in an oxygen atmosphere. The oxygen stoichiometric value δ was found to be 0.68 for Gd143 and 0.6 for Dy143 by iodometric titration. Rietveld refinement of x-ray powder diffraction data showed that Gd143 belongs to the space group Pm3 while Dy143 belongs to the space group P23. The two space groups, Pm3 and P23, are very similar. Their main difference is that P23 does not have the inversion symmetry of Pm3. Both compounds have a cubic unit cell with a lattice parameter of 8.16528 ± 0.00006 Å for Gd143 and 8.10807 ± 0.00010 Å for Dy143. Superconducting quantum interference device (SQUID) measurement indicated that neither compound was superconductive down to 5 K.

Type
Articles
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.de Leeuw, D. M., Mutsaers, C. A. H. A., Langereis, C., Smoorenburg, H. C. A., and Rommers, P. J., Physica C 152, 39 (1988).CrossRefGoogle Scholar
2.de Leeuw, D. M., Mutsaers, C. A. H. A., Streetman, R. A., Frikkee, E., and Zandbergen, H. W. E., Physica C 158, 391 (1989).CrossRefGoogle Scholar
3.Abbattista, F., Vallino, M., Mazza, D., Borlera, M.L., and Brisi, C., Mater. Chem. Phys. 20, 191 (1988).CrossRefGoogle Scholar
4.Abbattista, F., Vallino, M., and Mazza, D., Mater. Chem. Phys. 20, 521 (1989).CrossRefGoogle Scholar
5.Anderson, P. W., J. Phys. Chem. Solids 54, 1457 (1993).CrossRefGoogle Scholar
6.Zhu, Y. T., Baldonado, P. S., Peterson, E.J., Peterson, D.E., and Mueller, F. M., Powder Diffraction 12, 242 (1997).CrossRefGoogle Scholar
7.Zhu, Y. T., Peterson, E. J., Baldonado, P. S., Coulter, J. Y., Peterson, D. E., and Mueller, F. M., J. Phys. Chem. Solids 59, 1331 (1998).CrossRefGoogle Scholar
8.Larson, A. C. and Von Dreele, R. B., “GSAS, Generalized Structural Analysis System,” Document LAUR 86–748, Los Alamos National Laboratory, Los Alamos, NM (1993).Google Scholar