Hostname: page-component-78c5997874-4rdpn Total loading time: 0 Render date: 2024-11-19T09:31:41.076Z Has data issue: false hasContentIssue false

Synthesis and oxidation stability of monosized and monocrystalline Pr nanoparticles

Published online by Cambridge University Press:  31 January 2011

Bodh Raj Mehta*
Affiliation:
Thin Film Laboratory, Department of Physics, Indian Institute of Technology Delhi, New Delhi 110016, India
Frank Einar Kruis
Affiliation:
Institute for Technology of Nanostructures, University of Duisburg-Essen, 47057 Duisburg, Germany
Vidya Nand Singh
Affiliation:
Thin Film Laboratory, Department of Physics, Indian Institute of Technology Delhi, New Delhi 110016, India
*
a) Address all correspondence to this author. e-mail: brmehta@physics.iitd.ernet.in
Get access

Abstract

This study reports the synthesis of monosized Pr nanoparticles with a controllable size ranging from 5 to 20 nm. Pr agglomerates generated by a spark generator first size-selected by a differential mobility analyzer and subsequently sintered in-flight at different temperatures result in spherical and monocrystalline Pr nanoparticles. The dependence of size and size distribution of Pr nanoparticles has been studied as a function of deposition parameters related to spark generator, differential mobility analyzer, and sintering. Transmission electron microscopy, energy-dispersive x-ray analysis, glancing angle x-ray diffraction, and x-ray photoelectron spectroscopy studies confirm that initial Pr agglomerates and the resulting nanoparticles are metallic with d-hexagonal structure and remain stable in air during post-deposition exposure. Incomplete or partially sintered nanoparticles were found to be oxidized, resulting in the formation of amorphous oxide phase due to enhanced oxidation at grain boundaries.

Type
Articles
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Uda, T., Jacob, K.T., and Hirasawa, M.: Technique for enhanced rare earth separation. Science 289, 2326 (2000).CrossRefGoogle ScholarPubMed
2Fray, D.J.: Separating rare earth elements. Science 289, 2295 (2000).CrossRefGoogle Scholar
3von, P.J. Ranke, Mota, M.A., Grangeia, D.F., Magnus, A., Carvelho, G., Gandra, F.C.G., Coelho, A.A., Caldas, A., de Oliveira, N.A., and Gamaa, S.: Magnetocaloric effect in the RNi5 (R= Pr, Nd, Gd, Tb, Dy, Ho, Er) series. Phys. Rev. B 70, 134428 (2004).Google Scholar
4Rawat, R. and Das, I.: Magentic transitions in CeCu0.86Ge2 and PrCu0.76Ge2 as studied by magnetocaloric effect. Phys. Rev. B: Condens. Matter 64, 052407 (2001).CrossRefGoogle Scholar
5Song, X., Zhang, J., Yue, M., Li, E., Zeng, H., Lu, N., Zhou, M., and Zuo, T.: Technique for preparing ultrafine nanocrystalline bulk material of pure rare-earth metals. Adv. Mater. 18, 1210 (2006).CrossRefGoogle Scholar
6Mitchell, I.R., Farrell, P.M., Baxter, G.W., Collins, S.F., Grattan, K.T.V., and Sun, T.: Analysis of dopant concentration effects in praseodymium-based fluorescent fiber optic temperature sensors. Rev. Sci. Instrum. 71, 100 (2000).Google Scholar
7Huiberts, J.N., Griessen, R., Rector, J.H., Wijngaarden, R.J., Dekker, J.P., de Groot, D.G., and Koeman, N.J.: Yttrium and lanthanum hydride films with switchable optical properties. Nature 380, 231 (1996).CrossRefGoogle Scholar
8Züttel, A.: Materials for hydrogen storage. Mater. Today 24, (September) (2003).Google Scholar
9Amadeh, A., Pahlevani, B., and Heshmati-Manesh, S.: Effects in rare earth metal addition on surface morphology and corrosion resistance of hot-dipped zinc coatings. Corros. Sci. 44, 2321 (2002).Google Scholar
10Paul, S.K., Chakrabarty, A.K., and Basu, S.: Effect of rare earth additions on the inclusions and properties of a Ca-Al deoxidized steel. Metall. Trans. B 13, 185 (1982).Google Scholar
11Bist, B.M. and Srivastava, O.N.: A new f. c.c., gadolinium phase and its oxidation. J. Less-Common Met. 33, 99 (1973).CrossRefGoogle Scholar
12Weller, D. and Sarma, D.D.: Formation of a passive layer in surface oxidation of Gd: A LEED and AES study. Surf. Sci. 171, L425 (1986).CrossRefGoogle Scholar
13Arakawa, T., Kabumoto, A., and Shiokawa, J.: Some electrical properties of praseodymium oxide films produced by oxidation of thin metal films. J. Less-Common Met. 115, 281 (1986).CrossRefGoogle Scholar
14Gasgnier, M., Ghys, J., Schiffmacher, G., La, Ch.H. Blanchetais,Caro, P.E., Boulesteix, C., Loier, Ch., and Pardo, B.: Rare-earthhydrides and rare earth oxides in and from thin films of rare-earthmetals. J. Less-Common Met. 34, 131 (1974).CrossRefGoogle Scholar
15Si, P.Z., Skorvánek, I., Kovàĉ, J., Geng, D.Y., Zhao, X.G., andZhang, Z.D.: Structure and magnetic properties of Gd nanoparticlesand carbon coated Gd/GdC2 nanocapsules. J. Appl.Phys. 94, 6779 (2003).Google Scholar
16Saito, Y., Okuda, M., Yoshikawa, T., Kasuya, A., and Nishina, Y.:Correlation between volatility of rare-earth metals and encapsulationof their carbides in carbon nanocapsules. J. Phys. Chem. 98, 6696 (1994).Google Scholar
17Wildes, A.R., Ward, R.C.C., Wells, M.R., and Hjörvarsson, B.: The formation of epitaxial YH 2 in MBE grown yttrium thinfilms with a thin gold capping layer. J. Alloys Compd. 242, 49(1996).CrossRefGoogle Scholar
18Wan, H., Tsoukatos, A., Zhang, Y.J., Hadjipanayis, G.C., andShah, S.I.: Magnetic properties of Er-Ta granular thin films.Nanostruct. Mater. 1, 505 (1992).Google Scholar
19Zhang, Y., Nelson, C.E., Yan, Z.C., Skumryev, V., andHadjipanayis, G.C.: Application of energy-filtered imaging andHREM hrem in the study of terbium nanoparticles. Microsc. Microanal. 8, 1360 (2002).CrossRefGoogle Scholar
20Krill, C.E., Merzoug, F., Krauss, W., and Birringer, R.: Magneticproperties of nanocrystalline Gd and W/Gd. Nanostruct. Mater. 9, 455 (1997).Google Scholar
21Shevcenko, N.B., Murthy, A.S., and Hadjipanayis, G.C.: Microstructuraland magnetic studies of granular Gd-W films. Mater.Sci. Eng., A 204, 39 (1995).CrossRefGoogle Scholar
22Johnson, D., Perera, P., and O'Shea, M.J.: Finite size effect innanoscale Tb nanoparticles. J. Appl. Phys. 79, 5299 (1996).CrossRefGoogle Scholar
23Shevcenko, N.B., Murthy, A.S., and Hadjipanayis, G.C.: Preparationand characterization of Dy nanoparticles. Appl. Phys. Lett. 74, 1478 (1999).CrossRefGoogle Scholar
24Weller, D., Alvarado, S.F., Campagna, M.,Gudat, W., and Sarma, D.D.: Structure, magnetism and electronic excitations of epitaxial gadolinium (0001) on tungsten (110). Less-Common Metals 111, 277(1985).CrossRefGoogle Scholar
25Aruna, I., Mehta, B.R., Malhotra, L.K., and Shivaprasad, S.M.: Stabilityand hydrogenation of bare gadolinium nanoparticles. Adv.Mater. 16, 169 (2004).Google Scholar
26Nelson, J.A., Bennett, L.H., and Wagner, M.J.: Solution synthesis of gadolinium nanoparticles. J. Am. Chem. Soc. 124, 2979 (2002).CrossRefGoogle ScholarPubMed
27Nelson, J.A., Bennett, L.H., and Wagner, M.J.: Dysprosium nanoparticles synthesized by alkalide reduction. J. Mater. Chem. 13, 857 (2003).Google Scholar
28Ascencio, J.A., Canizal, G., Medina-Flores, A., Bejar, L., Tavera, L., Matamoros, H., and Liu, H.: Neodymium nanoparticles: Biosíntesis and structural análisis. J. Nanosci. Nanotechnol. 6, 1044 (2006).CrossRefGoogle Scholar
29Michels, D., Krill, C.E. III and Birringer, R.: Grain-size-dependent Curie transition in nanocrystalline Gd: The influence of interface stress. J. Magn. Magn. Mater. 250, 203 (2002).Google Scholar
30Shek, C.H. and Shao, Y.Z.: Characteristics of growth fractal of nanosized gadolinium powder and its abnormality in magnetic susceptibility. Scr. Mater. 44, 959 (2001).CrossRefGoogle Scholar
31Dixkens, J. and Fissan, H.: Development of an electrostatic precipitator for off-line particle analysis. Aerosol Sci. Technol. 30, 438 (1999).CrossRefGoogle Scholar
32Karlsson, M.N.A., Deppert, K., Karlsson, L.S., Magnusson, M.H., Malm, J-O., and Srinivassan, N.S.: Compaction of agglomerates of aerosol nanoparticles: A compilation of experimental data. J. Nanopart. Res. 7, 43 (2005).CrossRefGoogle Scholar
33Hanak, J.J. and Daane, A.H.: High temperature allotropy and thermal expansion of the rare-earth metals. J. Less-Common Met. 3, 110 (1961).Google Scholar
34Crecelius, G., Wertheim, G.K., and Buchanan, D.N.E.: Core-hole screening in lanthanide metals. Phys. Rev. B: Condens. Matter 18, 6519 (1978).Google Scholar
35Uwamino, Y., Ishizuka, T., and Yamatera, H.: X-ray photoelectron spectroscopy of rare-earth compounds. J. Electron Spectrosc. Relat. Phenom. 34, 67 (1984).Google Scholar
36Mason, M.G.: Electronic structure of supported small metal clusters. Phys. Rev. B: Condens. Matter 27, 748 (1983).Google Scholar
37Wertheim, G.K., DiCenzo, S.B., and Buchanan, D.N.E.: Noble- and transition-metal clusters: The d bands of silver and palladium. Phys. Rev. B: Condens. Matter 33, 5384 (1986).Google Scholar
38Fischer, D.W. and Baun, W.L.: Self-absorption effects in the soft x-ray Ma and Mb emission spectra of the rare earth elements. J. Appl. Phys. 38, 4830 (1967).CrossRefGoogle Scholar
39Wertheim, G.K. and Champagna, M.: Screening of 3d holes in the rare earths. Solid State Commun. 26, 553 (1978).CrossRefGoogle Scholar