Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-22T15:49:19.710Z Has data issue: false hasContentIssue false

Thermochemistry in the system Cu–In–S at 723 K

Published online by Cambridge University Press:  03 March 2011

H. Migge
Affiliation:
Hahn-Meitner-Institut Berlin GmbH, Glienicker Str. 100, 14109 Berlin, Germany
J. Grzanna
Affiliation:
Hahn-Meitner-Institut Berlin GmbH, Glienicker Str. 100, 14109 Berlin, Germany
Get access

Abstract

A thermochemical analysis is performed in the system Cu-In-S at 723 K. Free energies of In6,S7, In417S583, “In2S3”, Cu951In49, and CuIn5S8 have been estimated, the numerical values (kJ/mol) of which are −1285, −97 780, −481.1, −31 680, and −1444. The free energy (kJ/mol) of CuInS2 is calculated from the relation = (-306.1 ± 54.4) + 0.5092T −1.397 10−5T2 −0.09468T In T + 268.2T−1, which is obtained from published assessed standard formation enthalpy and specific heat and entropy data. The free energy of the Cu-In melt is taken from very new literature. A consistent set of data is used for the calculation of a tentative Gibbs triangle as well as of the corresponding predominance area diagram. The Gibbs triangle is calculated with the program thermo, the algorithm of which is given. The results are in agreement with the results of published measurements, also for the equilibria which involve the melt. The compound CuInS2, one of the possible base materials for thin film solar cells, is shown to equilibrate with most of the compounds of the system. Predictions are made how to prepare CuInS2 from Cu-In alloys and H2S/H2 gas mixtures. However, more experiments are necessary to establish the data, the experiments, and/or the results of the calculations.

Type
Articles
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Goslowsky, H., Fiechter, S., Könenkamp, R., and Lewerenz, H.J., Solar Energy Mater. 13, 221 (1986).CrossRefGoogle Scholar
2Kazmerski, L. L. and Sanborn, G. A., J. Appl. Phys. 48, 3178 (1977).CrossRefGoogle Scholar
3Wu, Y. L., Lin, H. Y., Sun, C. Y., Yang, M. H., and Hwang, H. L., Thin Solid Films 168, 113 (1989)CrossRefGoogle Scholar
4Takenoshita, H. and Nakau, T., Jpn. J. Appl. Phys. 21 (1), 18 (1982).CrossRefGoogle Scholar
5Hsu, H. J., Yang, M. H., Tang, R. S., Hsu, T. M., and Hwang, H. L., J. Cryst. Growth 70, 427 (1984).CrossRefGoogle Scholar
6Fleming, G. J., Fearheiley, M. L., and Lewerenz, H. J., J. Electrochem. Soc. 136 (5), 1506 (1989).CrossRefGoogle Scholar
7Scheer, R., Walther, T., Schock, H. W., Fearheiley, M. L., and Lewerenz, H. J., unpublished research.Google Scholar
8Metzner, H., Brüssler, M., Husemann, K. D., and Lewerenz, H. J., Phys. Rev. B 44, 11614 (1991).CrossRefGoogle Scholar
9Fearheiley, M. L., Dietz, N., Birkholz, M., and Höpfner, C., J. Electron. Mater. 20, 175 (1991).CrossRefGoogle Scholar
10Fearheiley, M. L., Dietz, N., Scheer, R., and Lewerenz, H. J., Proc. Xlllth State-of-the-Art Program on Compound Semiconductors, Seattle, WA, October 14–18, 1990.Google Scholar
11J.J.M. Binsma, Giling, L. J., and Bloem, J., J. Cryst. Growth 50, 429 (1980).Google Scholar
12Migge, H., J. Mater. Res. 6, 2381 (1991).CrossRefGoogle Scholar
13Vinokurova, G. A. and Geiderikh, V. A., Russ. J. Phys. Chem. 50, 1661 (1976).Google Scholar
14Chakrabarti, D. J. and Laughlin, D. E., Bull. Alloy Phase Diagrams 4, 254 (1983).CrossRefGoogle Scholar
15Sharma, R. C. and Chang, Y. A., Metall. Trans. 11B, 575 (1980).CrossRefGoogle Scholar
16Ferrante, M. J., Stuve, J. M., and Pankratz, L. B., High Temp. Sci. 14, 77 (1981).Google Scholar
17Kubaschewski, O. and Alcock, C. B., Metallurgical Thermochemistry, 5th ed. (Pergamon Press, Oxford, New York, 1979).Google Scholar
18Barin, J., Knacke, O., and Kubaschewski, O., Thermochemical Properties of Inorganic Substances (Springer-Verlag, Berlin, 1973, Suppl. 1977).Google Scholar
19JANAF Thermochemical Tables, 3rd ed., in J. Phys. and Chem. Ref. Data 14, Suppl. (1985).Google Scholar
20Gödecke, T. and Schubert, K., Z. Metallk. 76, 358 (1985).Google Scholar
21Hultgren, R., Desai, P. D., Hawkins, D. T., Gleiser, M., Kelly, K. K., and Wagman, D. D., Selcted Values of the Thermodynamic Properties of the Elements (ASM, Metals Park, OH, 1973).Google Scholar
22Mills, K. C., Thermodynamic Data for Inorganic Sulphides, Selenides, and Tellurides (Butterworth's, London, 1974).Google Scholar
23Subramanian, P. R. and Laughlin, D. E., Bull. Alloy Phase Diagrams 10, 554 (1989).CrossRefGoogle Scholar
24Jain, K. C., Ellner, M., and Schubert, K., Z. Metallk. 63, 456 (1972).Google Scholar
25Bolcavage, A., Chen, S. W., Kao, C. R., Chang, Y. A., and Romig, A. D. Jr., J. Phase Equilibria 14, 14 (1993).CrossRefGoogle Scholar
26Weibke, F. and Eggers, H., Z. Anorg. Allg. Chem. 220, 273 (1934).CrossRefGoogle Scholar
27Chang, Y. A. and Hsieh, K-Ch., Phase Diagrams of Ternary Copper-Oxygen-Metal Systems, Monograph Series on Alloy Phase Diagrams (ASM, Metals Park, OH, 1989), p. 61, system Cu-O-In.Google Scholar
28Kao, C. R., Bolcavage, A., Chen, S. L., Chen, S. W., Chang, Y. A., and Romig, A. D. Jr., J. Phase Equilibria 14, 22 (1993).CrossRefGoogle Scholar
29Bachmann, K. J., Hsu, F.S.L., Thiel, F. A., and Kasper, H. M., J. Electron. Mater. 6, 431 (1977).CrossRefGoogle Scholar
30Neumann, H., Kühn, G., and Moller, W., Phys. Status Solidi B 144, 565 (1987).CrossRefGoogle Scholar
31Schmid-Fetzer, R., in Thermochemistry of Alloys, edited by Brodowsky, H. and Schaller, H-J. (Kluwer Academic Publishers, Dordrecht, Boston, London, 1989), pp. 107117.CrossRefGoogle Scholar
32Migge, H., J. Nucl. Mater. 155–157, 455 (1988).CrossRefGoogle Scholar
33Migge, H., J. Nucl. Mater. 141–143, 448 (1986).CrossRefGoogle Scholar
34Lindemer, T. B., Besmann, Th. M., and Johnson, C. E., J. Nucl. Mater. 100, 178 (1981).CrossRefGoogle Scholar