Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-24T16:52:29.907Z Has data issue: false hasContentIssue false

Three-dimensional finite element analysis of the effects of anisotropy on bone mechanical properties measured by nanoindentation

Published online by Cambridge University Press:  03 March 2011

Z. Fan*
Affiliation:
Department of Biomedical Engineering, University of Memphis, Memphis, Tennessee 38152
J.Y. Rho
Affiliation:
Department of Biomedical Engineering, University of Memphis, Memphis, Tennessee 38152
J.G. Swadener
Affiliation:
Los Alamos National Laboratory, Los Alamos, New Mexico 87545
*
a) Address all correspondence to this author. Present address: Zaifeng Fan, Orthopedic & Rehabilitation Engineering Center, Marquette University, Academic Support Facility 105, 735 N. 17th St., P.O. Box 1881, Milwaukee, WI 53201-1881. e-mail: zaifeng.fan@marquette.edu
Get access

Abstract

A three-dimensional finite element analysis (FEA) model with elastic–plastic anisotropy was built to investigate the effects of anisotropy on nanoindentation measurements for cortical bone. The FEA model has demonstrated a capability to capture the cortical bone material response under the indentation process. By comparison with the contact area obtained from monitoring the contact profile in FEA simulations, the Oliver–Pharr method was found to underpredict or overpredict the contact area due to the effects of anisotropy. The amount of error (less than 10% for cortical bone) depended on the indentation orientation. The indentation modulus results obtained from FEA simulations at different surface orientations showed a trend similar to experimental results and were also similar to moduli calculated from a mathematical model. The Oliver–Pharr method has been shown to be useful for providing first-order approximations in the analysis of anisotropic mechanical properties of cortical bone, although the indentation modulus is influenced by anisotropy.

Type
Articles
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Oliver, W.C. and Pharr, G.M., J. Mater. Res. 7 1564 (1992).Google Scholar
2.Hengsberger, S., Kulik, A. and Zysset, P., Bone 30 178 (2002).CrossRefGoogle ScholarPubMed
3.Hoffler, C.E., Moore, K.E., Kozloff, K., Zysset, P.K., Brown, M.B. and Goldstein, S.A., Bone 28 603 (2000).CrossRefGoogle Scholar
4.Rho, J.Y., Roy, M.E., Tsui, T.Y. and Pharr, G.M., J. Biomed. Mater. Res. 45 48 (1999).3.0.CO;2-5>CrossRefGoogle Scholar
5.Rho, J.Y., Tsui, T.Y. and Pharr, G.M., Biomaterials 18 1325 (1997).Google Scholar
6.Zysset, P.K., Guo, X.E., Hoffler, C.E., Moore, K.E. and Goldstein, S.A., Tech. Health Care 6 429 (1998).CrossRefGoogle Scholar
7.Zysset, P.K., Guo, X.E., Hoffler, C.E., Moore, K.E. and Goldstein, S.A., J. Biomech. 32 1005 (1999).CrossRefGoogle Scholar
8.Fan, Z.F., Swadener, J.G., Rho, J.Y. and Pharr, G.M., J. Orthop. Res. 20 806 (2002).CrossRefGoogle Scholar
9.Swadener, J.G., Rho, J.Y. and Pharr, G.M., J. Biomed. Mater. Res. 57 108 (2001).3.0.CO;2-6>CrossRefGoogle Scholar
10.Willis, J.R., J. Mech. Phys. Solids. 14 163 (1966).CrossRefGoogle Scholar
11.Hay, J.C., Sun, E.Y., Pharr, G.M., Becher, P.F. and Alexander, K.B., J. Am. Ceram. Soc. 81 2661 (1998).Google Scholar
12.Vlassak, J.J. and Nix, W.D., Philos. Mag. A 67 1045 (1993).CrossRefGoogle Scholar
13.Vlassak, J.J. and Nix, W.D., J. Mech. Phys. Solids. 42 1223 (1994).Google Scholar
14.Alcala, J., Barone, A.C. and Anglada, M., Acta. Mater. 48 3451 (2000).Google Scholar
15.Mata, M., Anglada, M. and Alcala, J., J. Mater. Res. 17 964 (2002).Google Scholar
16.Bolshakov, A. and Pharr, G.M., J. Mater. Res. 13 1049 (1998).Google Scholar
17.Giannakopoulos, A.E., Larsson, P.L. and Vestergaard, R., Int. J. Solids. Struct. 31 2679 (1994).CrossRefGoogle Scholar
18.Hay, J.C., Bolshakov, A. and Pharr, G.M., J. Mater. Res. 14 2296 (1999).Google Scholar
19.Knapp, J.A., Follstaedt, D.M., Myers, S.M., Barbour, J.C. and Friedmann, T.A., J. Appl. Phys. 85 1460 (1999).CrossRefGoogle Scholar
20.Ashman, R.B. in Bone Mechanics, edited by Cowin, S.C. (CRC Press. New York, 1989), pp. 75.Google Scholar
21.Rho, J.Y., Ultrasonics 34 777 (1996).Google Scholar
22.Hoffmeister, B.K., Smith, S.R., Handley, S.M. and Rho, J.Y., Med. Biol. Eng. Comput. 38 333 (2000).Google Scholar
23.Swadener, J.G. and Pharr, G.M., Philos. Mag. A 81 447 (2001).Google Scholar
24.Fan, Z.F. and Rho, J.Y.J. Biomed. Mater. Res. 217 357 (2003).Google Scholar
25. ABAQUS version 6.1., Hibbitt, Karlsson & Sorensen, Inc., Pawtucket, RI.Google Scholar
26.Cowin, S.C. in Bone Mechanics, edited by Cowin, S.C. (CRC Press, New York, 1989), p. 129.Google Scholar
27.Akiva, U., Itzhak, E. and Wagner, H.D., Compos. Sci. Tech. 57 173 (1997).CrossRefGoogle Scholar
28.Katz, J.L., Nature 283 106 (1980).CrossRefGoogle Scholar
29.Weiner, S., Traub, W. and Wagner, H.D., J. Struct. Biol. 126 241 (1999).Google Scholar
30.Ziv, V., Wagner, H.D. and Weiner, S., Bone 18 417 (1996).Google Scholar
31.King, R.B., Int. J. Solids Struct. 23 1657 (1987).Google Scholar
32.Larson, P.L., Giannakopoulos, S.A. and Choi, K.W., Int. J. Solids Struct. 33 221 (1996).CrossRefGoogle Scholar