Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2025-01-05T03:00:51.027Z Has data issue: false hasContentIssue false

Ultralow-load indentation hardness and modulus of diamond films deposited by hot-filament-assisted CVD

Published online by Cambridge University Press:  31 January 2011

C. P. Beetz Jr.
Affiliation:
Advanced Technology Materials, New Milford, Connecticut 06776
C. V. Cooper
Affiliation:
United Technologies Research Center, East Hartford, Connecticut 06108
T. A. Perry
Affiliation:
General Motors Research Laboratories, Warren, Michigan 48090
Get access

Abstract

Diamond films, ranging in thickness to approximately 35 μm, were grown on Si(100) substrates using hot-filament-assisted CVD. Two different CH4:H2 ratios were employed during deposition, and the effects on the film morphology and ultralow-load indentation hardness and modulus were investigated. Films deposited from a single, linear filament exhibited a nonuniform deposition thickness profile that can be described by a simple exponential function. Films deposited at lower methane concentrations, 0.11% CH4 in H2, had larger crystallite sizes of ∼5–8 μm, an average hardness of 31 GPa, and an average modulus of 541 GPa. A higher CH4 concentration of 0.99% in H2 resulted in the formation of finer crystallites of approximately 0.5 μm, an average hardness of 65 GPa, and an average modulus of 875 GPa. While these values lie on the low end or outside of the range reported for single crystal diamond, this study has demonstrated that CVD diamond films can be synthesized with ultrahigh or near ultrahigh hardness.

Type
Diamond and Diamond-Like Materials
Copyright
Copyright © Materials Research Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Ditchburn, R. W., Optica Acta 29, 355 (1982).CrossRefGoogle Scholar
2Davis, R. F., Sitar, Z., Williams, B. E., Kong, H. S., Kim, H. J., Palmour, J.W., Edmond, J. A., Ryu, J., Glass, J.T., and Carter, C. H. Jr, Mater. Sci. Eng. B1, 77 (1988).CrossRefGoogle Scholar
3Angus, J. C. and Hayman, C. C., Science 241, 913 (1988).CrossRefGoogle Scholar
4Spear, K. E., J. Am. Ceram. Soc. 72, 171 (1989).CrossRefGoogle Scholar
5Badzian, A. R. and DeVries, R. C., Mater. Res. Bull. 23, 385 (1988).CrossRefGoogle Scholar
6Messier, R., Badzian, A. R., Badzian, T., Spear, K. E., Bachmann, P., and Roy, R., Thin Solid Films 153, 1 (1987).CrossRefGoogle Scholar
7Byvik, C.E., Hobsen, P., Buoncristiani, A.M., Albin, S., and Lakdawala, V., 2nd Annual Diamond Technology Initiative Seminar, SDIO/IST-ONR, 7–8 July 1987.Google Scholar
8Morelli, D.T., Beetz, C. P., and Perry, T. A., J. Appl. Phys. 64, 3063 (1988).Google Scholar
9Beetz, C. P. and Perry, T. A., General Motors Research Publication GMR-6093, November 14, 1987.Google Scholar
10Pethica, J. B., Hutchings, R., and Oliver, W. C., Philos. Mag. A 48, 595 (1983).Google Scholar
11O'Hern, M. E., McHargue, C. J., Clausing, R. E., Oliver, W. C., and Parrish, R. H., in Technology Update on Diamond Films, edited by Chang, R. P. H., Nelson, D., and Hiraki, O. (Materials Research Society, Pittsburgh, PA, 1989), p. 131.Google Scholar
12Doerner, M.F. and Nix, W.D., J. Mater. Res. 1, 601 (1986).CrossRefGoogle Scholar
13Perry, T. A. and Beetz, C. P. Jr, Proc. SPIE 1055, 152 (1989).CrossRefGoogle Scholar
14Bi, X. X., Eklund, P. C., Zhang, J. G., Rao, A. M., Perry, T. A., and Beetz, C. P. Jr, Proc. SPIE 1146, 192 (1989).CrossRefGoogle Scholar
15Perry, T. A. and Beetz, C.P., General Motors Research Publication GMR-6370, 16 July 1988.Google Scholar
16Dean, P. J., Phys. Rev. 139, A588 (1965).CrossRefGoogle Scholar
17Dyer, H. B., Raal, F. A., DuPreez, L., and Loubser, J. H. N., Philos. Mag. 11, 763 (1965).CrossRefGoogle Scholar
18Stoneham, A.M., Solid State Commun. 21, 339 (1977).CrossRefGoogle Scholar
WCollins, A.T., J. Phys. C 11, 1957 (1978).CrossRefGoogle Scholar
20Collins, A.T., J. Phys. C 11, 2453 (1978).CrossRefGoogle Scholar
21Collins, A.T., J. Phys. C 14, 289 (1981).CrossRefGoogle Scholar
22Collins, A.T., Szechi, J., and Tavender, S., J. Phys. B 21, L161 (1988).Google Scholar
23Davies, G. and Penchina, C. M., Proc. R. Soc. London, Ser. A 338, 359 (1974).Google Scholar
24Ross, J. D. J., Thin Solid Films 148, 171 (1987).CrossRefGoogle Scholar
25Tsai, H. and Bogy, D. B., J. Vac. Sci. Technol. A 5, 3287 (1987).CrossRefGoogle Scholar
26Hoshino, S., Fujii, K., Shohata, N., Yamaguchi, H., Tsukamoto, Y., and Yanagisawa, M., J. Appl. Phys. 65, 1918 (1989).CrossRefGoogle Scholar
27Brookes, C. A., Nature 228, 660 (1970).CrossRefGoogle Scholar
28Loladze, T. N., Bokuchava, G.V., and Davydova, G.E., Industrial Laboratory 33, 1187 (1967).Google Scholar
29McSkimim, H. J. and Andreatch, P., J. Appl. Phys. 43, 985 (1972).CrossRefGoogle Scholar
30Grimsditch, M. H. and Ramdas, A. K., Phys. Rev. B 11, 3139 (1975).CrossRefGoogle Scholar
31Beetz, C.P., Morelli, D. T., and Perry, T. A., 1st Int. Conf, on The New Diamond Science and Technology, Tokyo, Japan, 24–26 October 1988.Google Scholar