Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-23T12:02:14.876Z Has data issue: false hasContentIssue false

Unidirectional Partial Melting and Solidification of SmBCO Superconductor

Published online by Cambridge University Press:  31 January 2011

M. Sumida
Affiliation:
Department of Metallurgy, Graduate School of Engineering, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113, Japan
Y. Nakamura
Affiliation:
Superconductivity Research Laboratory–International Superconductivity Technology Center, 1-10-13, Shinonome, Koto-ku, Tokyo, 135, Japan
Y. Shiohara
Affiliation:
Superconductivity Research Laboratory–International Superconductivity Technology Center, 1-10-13, Shinonome, Koto-ku, Tokyo, 135, Japan
T. Umeda
Affiliation:
Department of Metallurgy, Graduate School of Engineering, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113, Japan
Get access

Abstract

Microstructure control of the SmBCO superconductor was carried out using the floating zone partial melting and solidification method. It is generally recognized that finely and uniformly dispersed nonsuperconductive high temperature stable phase (Sm211) particles included in the superconductive Sm123 matrix act as effective pinning centers. Microstructure formation of the partial molten mixture (Sm211 particles and BaO–CuO liquid) by decomposition of the precursor Sm123 on melting and solidification of Sm123 from the mixture have to be controlled concurrently to fabricate the 123/211 composite fiber with the optimum microstructure. During unidirectional solidification, planar crystal growth which provides the single crystal growth of Sm123 becomes unstable with increased growth rate. During unidirectional melting, the mean diameter of aligned Sm211 particles behind the melting interface decreases with increased growth rate and with decreased temperature gradient at the melting interface. Initial composition of the precursor significantly affects the formation behavior of Sm211 particles. The contribution of process parameters to the microstructure formation is also briefly discussed.

Type
Articles
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Ch. Krauns, Tagami, M., Nakamura, M., Yamada, Y., and Shiohara, Y., Advances in Superconductivity VII (Springer-Verlag, Tokyo, 1995), pp. 641644.Google Scholar
2.Wolf, Th., Goldacker, W., Obst, B., Roth, G., and Flükiger, R., J. Cryst. Growth 96, 10101018 (1989).CrossRefGoogle Scholar
3.Jin, S., Tiefel, T. H., Sherwood, R. C., van Dover, R. B., Davis, M. E., Kammlott, G. W., and Fastnacht, R. A., Phys. Rev. B 37, 78507853 (1988).CrossRefGoogle Scholar
4.Nakamura, Y., Furyua, K., Izumi, T., and Shiohara, Y., J. Mater. Res. 9, 13501356 (1994).CrossRefGoogle Scholar
5.Sun, B. N., Hartman, P., Woensdregt, C. F., and Schmid, H., J. Cryst. Growth 100, 605614 (1990).CrossRefGoogle Scholar
6.Lee, D. F., Selvamanickam, V., and Salama, K., Physica C 202, 8396 (1992).CrossRefGoogle Scholar
7.Murakami, M., Yoo, S. I., Higuchi, T., Sakai, N., Watabiki, M., Koshizuka, N., and Tanaka, S., Physica C 235–240, 27812782 (1994).CrossRefGoogle Scholar
8.Yoo, S. I., Murakami, M., Sakai, N., Higuchi, T., and Tanaka, S., Jpn. J. Appl. Phys. 33, L1000–L1003 (1994).CrossRefGoogle Scholar
9.Salama, K., Selvamanickahm, V., Gao, L., and Sun, K., Appl. Phys. Lett. 54 (23), 23522354 (1989).CrossRefGoogle Scholar
10.Lee, B. J. and Lee, D. N., J. Am. Ceram. Soc. 72 (2), 314319 (1989).CrossRefGoogle Scholar
11.Lee, B. J. and Lee, D. N., J. Am. Ceram. Soc. 74 (1), 7884 (1991).CrossRefGoogle Scholar
12.Zhang, W., Osamura, K., and Ochiai, S., J. Am. Ceram. Soc. 73 (7), 19581964 (1990).CrossRefGoogle Scholar
13.Sumida, M., Tagami, M., Ch. Krauns, Umeda, T., and Shiohara, Y., Advances in Superconductivity VI (Springer-Verlag, Tokyo, 1994), pp. 775778.CrossRefGoogle Scholar
14.Sumida, M., Tagami, M., Ch. Krauns, Shiohara, Y., and Umeda, T., Physica C 249, 4752 (1995).CrossRefGoogle Scholar
15.Czerwonka, J. and Eick, H. A., J. Solid State Chem. 90, 6978 (1991).CrossRefGoogle Scholar
16.Krauns, Ch., Sumida, M., Tagami, M., Yamada, Y., and Shiohara, Y., Z. Phys. B 96, 207212 (1994).CrossRefGoogle Scholar
17.Yoo, S. I., Sakai, N., Takaichi, H., Higuchi, T., and Murakami, M., Appl. Phys. Lett. 65 (5), 633635 (1994).CrossRefGoogle Scholar
18.Murakami, M., Yoo, S. I., Higuchi, T., Sakai, N., Weltz, J., Koshizuka, N., and Tanaka, S., Jpn. J. Appl. Phys. 33, L715–L717 (1994).CrossRefGoogle Scholar
19.Egi, T., Wen, J. G., Kuroda, K., Unoki, H., and Koshizuka, N., Appl. Phys. Lett. 67 (16), 24062408 (1995).CrossRefGoogle Scholar
20.Nakamura, M., Yamada, Y., Hirayama, T., Ikuhara, Y., Shiohara, Y., and Tanaka, S., Physica C 259, 295303 (1996).CrossRefGoogle Scholar
21.Oka, K. and Ito, T., Physica C 227, 7784 (1994).CrossRefGoogle Scholar
22.Cima, M. J., Flemings, M. C., Figueredo, A. M., Nakade, M., Ishii, H., Brody, H. D., and Haggerty, J. S., J. Appl. Phys. 72 (1), 179190 (1992).CrossRefGoogle Scholar
23.Izumi, T., Nakamura, Y., and Shiohara, Y., J. Cryst. Growth 128, 757761 (1993).CrossRefGoogle Scholar
24.Izumi, T., Nakamura, Y., and Shiohara, Y., J. Mater. Res. 7, 16211628 (1992).CrossRefGoogle Scholar
25.Mori, N. and Ogi, K., J. Jpn. Inst. Metals, 58 (12), 14441453 (1994).CrossRefGoogle Scholar
26.Nakamura, Y. and Shiohara, Y., J. Mater. Res. 11, 24502457 (1996).CrossRefGoogle Scholar
27.Kerr, H. W., Cisse, J., and Bolling, G. F., Acta Metall. 22, 677 (1974).CrossRefGoogle Scholar
28.Fredriksson, H. and Nylén, T., Met. Sci. 22, 283 (1982).CrossRefGoogle Scholar
29.Trivedi, R., Acta Metall. 18, 287 (1970).CrossRefGoogle Scholar
30.Bosze, W. P. and Trivedi, R., Metall. Trans. 5, 511 (1974).CrossRefGoogle Scholar
31.John, D. H. St. and Hogan, L. M., Acta Metall. 25, 77 (1977).CrossRefGoogle Scholar
32.John, D. H. St. and Hogan, L. M., Acta Metall. 35, 171 (1987).CrossRefGoogle Scholar
33.Sumida, M., Endo, A., Nakamura, Y., Furuya, F., Yao, X., Umeda, T., and Shiohara, Y., Advances in Superconductivity VII (Springer-Verlag, Tokyo, 1995), pp. 665668.CrossRefGoogle Scholar
34.Griffith, M. L., Huffman, R. T., and Halloran, J. W., J. Mater. Res. 9, 16331643 (1994).CrossRefGoogle Scholar
35.Kurz, W. and Fisher, J. D., Fundamentals of Solidification, 3rd ed. (Trans Tech Publications, Aldermannsdorf, Switzerland, 1989), pp. 247260.Google Scholar
36.Chen, H. S. and Jackson, K. A., J. Cryst. Growth 8, 184190 (1971).CrossRefGoogle Scholar
37.Woodruff, D. P. and Forty, A. J., Philos. Mag. 15, 283 (1967).CrossRefGoogle Scholar
38.Kato, H. and Umeda, T., J. Cryst. Growth 38, 93102 (1977).CrossRefGoogle Scholar
39.Figueredo, A. M., Cima, M. J., Flemings, M. C., and Haggerty, J. S., Metal. Mater. Trans. A 25A, 17471760 (1994).CrossRefGoogle Scholar
40.Flemings, M. C., Solidification Processing (McGraw-Hill Publishing, New York, 1974), pp. 130.Google Scholar
41.Fullman, R. L., Trans. AIME 197, 447 (1953).Google Scholar
42.DeHoff, R. T. and Rhines, F. N., Quantitative Microscopy (McGraw-Hill Publishing, New York, 1968), pp. 145166.Google Scholar
43.De Wiest, Roger J. M., Davis, Stanley N., and Rumer, Ralph R. Jr, in Flow Through Porous Media, edited by De Wiest, Roger J. M. (Academic Press, London, 1969), pp. 1107; D. Dicker, ibid., Chap. 7, pp. 293–330.Google Scholar
44.Hillert, M. and Uhrenius, B., Scand. J. Metall. 1, 223230 (1972).Google Scholar
45.Yao, X., Furuya, K., Nakamura, Y., Wen, J., Endoh, A., Sumida, M., and Shiohara, Y., J. Mater. Res. 10, 30033008 (1995).CrossRefGoogle Scholar
46.Veal, B. W. and Jorgensen, J. D., Acta Cryst. C46, 19861988 (1990).Google Scholar