Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-23T12:39:05.293Z Has data issue: false hasContentIssue false

Zirconium tungstate reinforced cyanate ester composites with enhanced dimensional stability

Published online by Cambridge University Press:  31 January 2011

Michael R. Kessler*
Affiliation:
Department of Materials Science and Engineering, Iowa State University, Ames, Iowa 50011
*
a) Address all correspondence to this author. e-mail: mkessler@iastate.edu
Get access

Abstract

Zirconium tungstate (ZrW2O8) is a unique ceramic material characterized by isotropic negative thermal expansion behavior over a wide temperature range. Incorporation of ZrW2O8 is expected to improve the dimensional stability of polymers by reducing the overall coefficient of thermal expansion (CTE). In this work, the thermal and dynamic mechanical properties of a bisphenol E cyanate ester reinforced with various loadings of ZrW2O8 are examined. Thermomechanical analysis indicates that the incorporation of ZrW2O8 results in a decrease in CTE at temperatures above and below the glass transition temperature (Tg) of the neat resin. The dynamic storage moduli of the composites reinforced with ZrW2O8 are found to increase with increasing filler loading. Furthermore, the various phase behaviors exhibited by ZrW2O8 are also examined by differential scanning calorimetry measurements.

Type
Articles
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Sleight, A.W.: Isotropic negative thermal expansion. Annu. Rev. Mater. Sci. 28, 29 (1998).CrossRefGoogle Scholar
2Mary, T.A., Evans, J.S.O., Vogt, T., and Sleight, A.W.: Negative thermal expansion from 0.3 to 1050 K in ZrW2O8. Science 272, 90 (1996).CrossRefGoogle Scholar
3Evans, J.S.O., Hu, Z., Jorgensen, J.D., Argyriou, D.N., Short, S., and Sleight, A.W.: Compressibility, phase transitions, and oxygen migration in zirconium tungstate. Science 275, 61 (1997).CrossRefGoogle ScholarPubMed
4Jorgensen, J.D., Hu, Z., Teslic, S., Argyriou, D.N., Short, S., Evans, J.S.O., and Sleight, A.W.: Pressure induced cubic to orthorhombic phase transition in ZrW2O8. Phys. Rev. B 59, 215 (1999).CrossRefGoogle Scholar
5Figueiredo, C.A., Catafesta, J., Zorzi, J.E., Salvador, L., Baumvol, J.R., Gallas, M.R., Jornada, J.A.H. da, and Perottoni, C.A.: Compression mechanism and pressure induced amorphization of ZrW2O8. Phys. Rev. B 76, 184201 (2007).CrossRefGoogle Scholar
6Perottoni, C.A., Zorzi, J.E., and Jornada, J.A.H. da: Entropy increase in amorphous to crystalline phase transition in zirconium tungstate. Solid State Commun. 134, 319 (2005).CrossRefGoogle Scholar
7Cross, W.M., Henderson, B.D., Weyer, W.C., Kroetch, C., Kjerentroen, L., Welsh, J., and Kellar, J.J.: Functional fillers for dimensional stability, in Functional Fillers and Nanoscale Minerals, edited by Kellar, J.J. (SME Inc., Littleton, CO, 2006), p. 127.Google Scholar
8Sleight, A.W., Evans, J.S.O., and David, W.I.F.: Structural investigation of the negative thermal expansion material ZrW2O8. Acta Crystallogr., Sect. B 55, 333 (1999).Google Scholar
9Pryde, A.K.A., Hammonds, K.D., Dove, M.T., Heine, V., Gale, J.D., and Warren, M.C.: Origin of negative thermal expansion in ZrW2O8 and ZrV2O7. J. Phys.: Condens. Matter 8, 10973 (1996).Google Scholar
10Shi, J.D., Pu, Z.J., and Wu, K.H.: Composites with adjustable thermal expansion for electronic applications, in Electronic Packaging Materials Science IX, edited by Groothuis, S.K., Ho, P.S., Ishida, K., and Wu, T. (Mater. Res. Soc. Symp. Proc. 445, Warrendale, PA, 1997), p. 229.Google Scholar
11Weyer, W.C., Cross, W.M., Henderson, B., Kellar, J.J., Kjerentroen, L., Welsh, J., and Starkovich, J.: Achieving dimensional stability using functional fillers, in Proceedings of the Structural Dynamics and Materials Conference (Austin, TX, 2005), p. 2091.Google Scholar
12Sullivan, L.M. and Lukehart, C.M.: Zirconium tungstate/polyimide nanocomposites exhibiting reduced coefficient of thermal expansion. Chem. Mater. 17, 2136 (2005).CrossRefGoogle Scholar
13Tani, J.I., Kimura, H., Hiorata, K., and Kido, H.: Thermal expansion and mechanical properties of phenolic resin/ZrW2O8 composites. J. Appl. Polym. Sci. 106, 3343 (2007).CrossRefGoogle Scholar
14Miller, W., Smith, C.W., Dooling, P., Burgess, A.N., and Evans, K.E.: Tailored thermal expansivity in particulate composites for thermal stress management. Phys. Status Solidi 245, 552 (2006).CrossRefGoogle Scholar
15Goertzen, W.K. and Kessler, M.R.: Thermal and mechanical behavior of cyanate ester composites with low temperature processability. Composites Part A 779, 38 (2007).Google Scholar
16Sheng, X., Akinc, M., and Kessler, M.R.: Cure kinetics of thermosetting bisphenol E cyanate ester. J. Therm. Anal. Calorim. 93, 77 (2008).CrossRefGoogle Scholar
17Goertzen, W.K. and Kessler, M.R.: Dynanmic mechanical analysis of fumed silica cyanate ester nanocomposites. Composites Part A 761, 39 (2008).Google Scholar
18Goertzen, W.K., Sheng, X., Akinc, M., and Kessler, M.R.: Rheology and curing kinetics of fumed silica cyanate ester nanocomposites. Polym. Eng. Sci. 48, 875 (2008).CrossRefGoogle Scholar
19Sheng, X., Akinc, M., and Kessler, M.R.: The effects of alumina nanoparticles on the cure kinetics of bisphenol E cyanate ester. Polym. Eng. Sci. (submitted, 2009).CrossRefGoogle Scholar
20Goertzen, W.K. and Kessler, M.R.: Three phase cyanate ester composites with fumed silica and negative CTE reinforcements. J. Therm. Anal. Calorim. 93, 87 (2008).CrossRefGoogle Scholar
21De Meyer, C.D., Vandperre, L., Driessche, I. Van, Bruneel, E., and Hoste, S.: Processing effects observed during the densification of the negative CTE compound ZrW2O8. Cryst. Eng. 5, 468 (2002).CrossRefGoogle Scholar
22Holzer, H. and Dunand, D.C.: Phase transformation and thermal expansion of Cu/ZrW2O8 metal matrix composites. J. Mater. Res. 14, 780 (1999).CrossRefGoogle Scholar
23Haman, K.J., Badrinarayanan, P., and Kessler, M.R.: Effect of zirconium tungstate filler on the cure behavior of a cyanate ester. App. Mater. Int. (in press, 2009) DOI: 10.1021/am900051g.CrossRefGoogle Scholar
24Qiu, J., Zhang, C., Wang, B., and Liang, R.: Carbon nanotube integrated multifunctional multiscale composites. Nanotechnology 18, 275708 (2007).CrossRefGoogle Scholar
25Goertzen, W.K. and Kessler, M.R.: Thermal expansion of fumed silica cyanate ester nanocomposites. J. Appl. Polym. Sci. 109, 647 (2008).CrossRefGoogle Scholar
26Wong, C.P. and Bollampally, R.S.: Thermal conductivity, elastic modulus, and coefficient of thermal expansion of polymer composites filled with ceramic particles for electronic packaging. J. Appl. Polym. Sci. 74, 3396 (1999).3.0.CO;2-3>CrossRefGoogle Scholar
27Vo, H.T., Todd, M., Shi, F.G., Shapiro, A.A., and Edwards, M.: Towards model based engineering of underfill materials: CTE modeling. Microelectron. J. 32, 331 (2001).CrossRefGoogle Scholar
28Schapery, R.A.: Thermal expansion coefficients of composite materials based on energy principles. J. Compos. Mater. 2, 380 (1968).CrossRefGoogle Scholar
29Drymiotis, F.R., Ledbetter, H., Betts, J.B., Kimura, T., Lashley, J.C., Migliori, A., Ramirez, A.P., Kowach, G.R., and Duijn, J. Van: Monocrystal elastic constants of the negative-thermal-expansion compoundzirconium tungstate (ZrW2O8). Phys. Rev. Lett. 93, 25502 (2004).CrossRefGoogle ScholarPubMed