Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-23T16:34:13.841Z Has data issue: false hasContentIssue false

Atomic structure, electrical properties, and infrared range optical properties of diamondlike carbon films containing foreign atoms prepared by pulsed laser deposition

Published online by Cambridge University Press:  31 January 2011

Q. Wei
Affiliation:
NSF Center for Advanced Materials and Smart Structures, Department of Mechanical Engineering, North Carolina A&T State University, Greensboro, North Carolina 27411
J. Sankar
Affiliation:
NSF Center for Advanced Materials and Smart Structures, Department of Mechanical Engineering, North Carolina A&T State University, Greensboro, North Carolina 27411
A. K. Sharma
Affiliation:
Department of Materials Science and Engineering, North Carolina State University, Raleigh, North Carolina 27695–7916
S. Oktyabrsky
Affiliation:
Department of Materials Science and Engineering, North Carolina State University, Raleigh, North Carolina 27695–7916
J. Narayan
Affiliation:
Department of Materials Science and Engineering, North Carolina State University, Raleigh, North Carolina 27695–7916
R. J. Narayan
Affiliation:
Department of Medicine, Wake Forest University, Winston Salem, North Carolina 27106
Get access

Abstract

We investigated the atomic structure, electrical, and infrared range optical properties of diamondlike carbon (DLC) films containing alloy atoms (Cu, Ti, or Si) prepared by pulsed laser deposition. Radial distribution function (RDF) analysis of these films showed that they are largely sp3 bonded. Both pure DLC and DLC + Cu films form a Schottky barrier with the measuring probe, whereas DLC + Ti films behave like a linear resistor. Pure DLC films and those containing Cu exhibit p-type conduction, and those containing Ti and Si have n-type conduction. Photon-induced conduction is observed for pure DLC, and the mechanism is discussed in terms of low-density gap states of highly tetrahedral DLC. Our results are consistent with relative absence of gap states in pure DLC, in accordance with theoretical prediction by Drabold et al.37 Temperature dependence of conductivity of DLC + Cu shows a behavior σ exp(−B/T1/2), instead of the T−1/4 law (Mott–Davis law). Contributions from band-to-band transitions, free carriers, and phonons to the emissivity spectrum are clearly identified in pure DLC films. The amorphous state introduces a large contribution from localized states. Incorporation of a small amount of Si in the DLC does not change the general feature of emissivity spectrum but enhances the contribution from the localized states. Cu and Ti both enhance the free carrier and the localized state contributions and make the films a black body.

Type
Articles
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Ball, P., Nature 391, January 8, 1998.Google Scholar
2.Atkins, P.W., Physical Chemistry, 5th ed. (W.H. Freeman, San Francisco, CA, 1994).Google Scholar
3.Robertson, J., Prog. Solid Stat Chem. 21, 199 (1991).CrossRefGoogle Scholar
4.Voevodin, A.A. and Donley, M.S., Surf. Coat. Technol. 82, 199 (1996).CrossRefGoogle Scholar
5.Milne, W.I., J. Non-Cryst. Solids 198–200, 605 (1996).CrossRefGoogle Scholar
6.Enke, K., Mater. Sci. Forum 52–53, 559 (1990).Google Scholar
7.Covalently Bonded Disordered Thin-Film Materials, edited by Siegal, M.P., Milne, W.I., and Jaskie, J.I. (Mater. Res. Soc. Symp. Proc. 498, Warrendale, PA, 1998).Google Scholar
8.Krishnaswamy, J., Rengan, A., Narayan, J., Vedom, K., and McHorgue, C.J., Appl. Phys. Lett. 54, 2455 (1989).CrossRefGoogle Scholar
9.Sato, T., Furuno, S., Ifuchi, S., and Hanabusa, M., Jpn. J. Appl. Phys. 26, 1487 (1987).CrossRefGoogle Scholar
10.Pappas, D.L., Saenger, K.L., Bruley, J., Krakow, W., and Cuomo, J.J., J. Appl. Phys. 71, 5672 (1992).CrossRefGoogle Scholar
11.Rohlfing, E.A., J. Chem. Phys. 89, 6103 (1988).CrossRefGoogle Scholar
12.Chhowalla, M., Yin, Y., Amaratunga, G.A.J, McKenzie, D.R., and Frauenheim, Th., Diamond Relat. Mater. 6, 207 (1997).CrossRefGoogle Scholar
13.Kulik, J., Lifshitz, Y., Lempert, G.D., Rabalais, J.W., and Marton, D., J. Appl. Phys. 76, 5063 (1994).CrossRefGoogle Scholar
14.Wei, Q., Narayan, R.J., Narayan, J., Sankar, S., and Sharma, A.K., Mater. Sci. Eng. B 53, 262 (1998).CrossRefGoogle Scholar
15.Wei, Q., Narayan, R.J., Sharma, A.K., Sankar, J., and Narayan, J., J. Vac. Sci. Technol. 17, 3406 (1999).CrossRefGoogle Scholar
16.Ebihara, K., Ikegami, T., Matsumoto, T., Nishimoto, H., Maeda, S., and Harada, K., J. Appl. Phys. 66, 4996 (1989).CrossRefGoogle Scholar
17.Ravindra, N.M., Abedrabbo, S., Chen, W., Tong, F.M., Nanda, A.K., and Speranza, A.C., IEEE Trans. Semicond. Manufact. 11, 30 (1998).CrossRefGoogle Scholar
18.Prawer, S., Nugent, K.W., Lifshitz, Y., Lempert, G.D., Grossman, E., Kulik, J., Avigal, I., and Kalish, R., Diamond Relat. Mater. 5, 433 (1996).CrossRefGoogle Scholar
19.Cockayne, D.J.H and McKenzie, D.R., Acta Crystallogr. A 44, 870 (1988).CrossRefGoogle Scholar
20.Mildner, D.F.R and Carpenter, J.M., J. Non-Cryst. Solids 47, 391 (1982).CrossRefGoogle Scholar
21.Li, F. and Lannin, J.S., Phys. Rev. Lett. 65, 1905 (1991).CrossRefGoogle Scholar
22.Field, J.E., Properties of Diamond (Academic Press, San Diego, CA, 1979).Google Scholar
23.Green, D.C., McKenzie, D.R., and Lukins, P.B., Mater. Sci. Forum, 52–53, 103 (1990).Google Scholar
24.Gaskell, P.A., Saeed, A., Chieux, P., and McKenzie, D.R., Phys. Rev. Lett. 67, 1286 (1991).CrossRefGoogle Scholar
25.McKenzie, D.R., Muller, D., and Pailthorpe, B.A., Phys. Rev. Lett. 67, 773 (1991).CrossRefGoogle Scholar
26.Boiko, B.T., Palatnik, L.S., and Derevyanchenko, A.S., Sov. Phy. Dokl. 13(3), 237 (1968).Google Scholar
27.Wang, C.Z. and Ho, K.M., Phys. Rev. Lett. 71, 1184 (1993).CrossRefGoogle Scholar
28.Frauenheim, Th., Blaudech, P., Stephan, U., and Jungnickel, G., Phys. Rev. B 48, 4823 (1993).CrossRefGoogle Scholar
29.Myers, A.F., Ding, M.Q., Camphausen, S.M., Choi, W.B., Cuomo, J.J., and Hren, J.J., in Covalently Bonded Disordered Thin-Film Materials, edited by Siegal, M.P., Milne, W.I., and Jaskie, J.I. (Mater. Res. Soc. Symp. Proc. 498, Warrendale, PA, 1998), p. 83.Google Scholar
30.Wei, Q. (unpublished work).Google Scholar
31.Dikshit, S.J., Lele, P., Ogale, S.B., and Kshirsagar, S.T., J. Mater. Res. 11, 2236 (1996).CrossRefGoogle Scholar
32.Madelung, O., Introduction to Solid-State Theory (Springer, Berlin, 1996).Google Scholar
33.Fallon, P., Veerasamy, V.S., Davis, C.A., Robertson, J., Amaratunga, G.A.J, Milne, W.I., and Koskinen, J., Phys. Rev. B 48, 4877 (1993).CrossRefGoogle Scholar
34.Milnes, A.G., Deep Impurities in Semiconductors (John Wiley & Sons, New York, 1973).Google Scholar
35.Mott, N.F. and Davis, E.A., Electronic Processes in Non-crystalline Materials, 2nd ed. (Clarendon Press, Oxford, United Kingdom, 1979).Google Scholar
36.Amaratunga, G.A.J, Robertson, J., Veerasamy, V.S., Milne, W.I., and McKenzie, D.R., Diamond Relat. Mater. 4, 637 (1995).CrossRefGoogle Scholar
37.Drabold, D.A., Fedders, P.A., and Grumbach, M.P., Phys. Rev. B 54, 5480 (1996).CrossRefGoogle Scholar
38.Sullivan, J.P. and Friedmann, T.A., in Specialist Meeting on Amorphous Carbon (Cambridge University, World Scientific, Singapore, 1997).Google Scholar
39.Stankiewicz, J., von Molnar, S., and Giriat, W., Phys. Rev. B 33, 3573 (1986).CrossRefGoogle Scholar
40.Shafarman, W.N., Castner, T.G., Brooks, J.S., Martin, K.P., and Naughton, M.J., Phys. Rev. Lett. 56, 980 (1986).CrossRefGoogle Scholar
41.Efros, A.L. and Shklovskii, B.I., J. Phys. C: Solid State Phys. 8, L49 (1975).CrossRefGoogle Scholar
42.Hamilton, E.M., Cross, J.A., and Adkins, C.J., in Proceedings of the International Conference on Amorphous and Liquid Semiconductors, edited by Stuke, J. and Brenig, W. (Taylor & Francis, London; Halsted Press, New York 1974), p. 1225.Google Scholar
43.Bozhko, A., Ivanov, A., Berrettoni, M., Chudinov, S., Stizza, S., Dorfman, V., and Pypkin, B., Diamond Relat. Mater. 4, 488 (1995).CrossRefGoogle Scholar
44.Grigorovici, R., Devenyi, A., Gheorghia, A., and Belu, A., J. Non-Cryst. Solids 8–10, 793 (1972).CrossRefGoogle Scholar
45.Sato, T., Jpn. J. Appl. Phys. 6, 339 (1967).CrossRefGoogle Scholar