Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-25T01:26:18.816Z Has data issue: false hasContentIssue false

Ba3Yb(BO3)3 single crystals: Growth and spectroscopic characterization

Published online by Cambridge University Press:  31 January 2011

R. Solé*
Affiliation:
Física i Cristal⋅lografia de Materials (FiCMA), Universitat Rovira i Virgili (URV), Campus Sescelades, E-43007 Tarragona, Catalunya, Spain
F. Güell
Affiliation:
Enginyeria i Materials Electrònics (EME), Departament d’Electrònica, Universitat de Barcelona, E-08028 Barcelona, Catalunya, Spain
Jna. Gavaldà
Affiliation:
Física i Cristal⋅lografia de Materials (FiCMA), Universitat Rovira i Virgili (URV), Campus Sescelades, E-43007 Tarragona, Catalunya, Spain
M. Aguiló
Affiliation:
Física i Cristal⋅lografia de Materials (FiCMA), Universitat Rovira i Virgili (URV), Campus Sescelades, E-43007 Tarragona, Catalunya, Spain
F. Díaz
Affiliation:
Física i Cristal⋅lografia de Materials (FiCMA), Universitat Rovira i Virgili (URV), Campus Sescelades, E-43007 Tarragona, Catalunya, Spain
*
a)Address all correspondence to this author. e-mail: rosam.sole@urv.cat
Get access

Abstract

We obtained Ba3Yb(BO3)3 single crystals by the flux method with solutions of the BaB2O4–Na2O–Yb2O3 system. The evolution of the cell parameters with temperature shows a slope change at temperatures near 873 K, which may indicate a phase transition that is not observed by changes appearing in the x-ray powder patterns or by differential thermal analysis (DTA). The evolution of the diffraction patterns with the temperature shows incongruent melting at temperatures higher than 1473 K. DTA indicates that there is incongruent melting and this process is irreversible. Ba3Yb(BO3)3 has a wide transparency window from 247 to 3900 nm. We recorded optical absorption and emission spectra at room and low temperature, and we determined the splitting of Yb3+ ions. We used the reciprocity method to calculate the maximum emission cross section of 0.28 × 10−20 cm2 at 966 nm. The calculated lifetime of Yb3+ in Ba3Yb(BO3)3 is τrad = 2.62 ms, while the measured lifetime is τ = 3.80 ms.

Type
Articles
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Zavartsev, F.Y., Koutovoi, S.A., Voronov, V.V., Panyutin, V.V., Zagumennyi, A.I.Shcherbakov, I.A.: Phenomenon of metastable liquation during BiB3O6 crystallization. J. Cryst. Growth 275, 637 2005CrossRefGoogle Scholar
2Leonyuk, N.I., Koporulina, E.V., Maltsev, V.V., Li, J., Zhang, H.J., Zhang, J.X.Wang, J.Y.: Growth and characterization of (Tm,Y)Al3(BO3)4 and (Yb,Y)Al3(BO3)4 crystals. J. Cryst. Growth 277, 252 2005CrossRefGoogle Scholar
3Zhao, D., Hu, Z., Lin, Z.Wang, G.: Growth and spectral properties of Er3+/Yb3+-codoped Sr3Y(BO3)3 crystal. J. Cryst. Growth 277, 401 2005CrossRefGoogle Scholar
4Nishioka, M., Kanoh, A., Yoshimura, M., Mori, Y.Sasaki, T.: Growth of CsLiB6O10 crystals with high laser damage tolerance. J. Cryst. Growth 279, 76 2005CrossRefGoogle Scholar
5Eimerl, D., Davis, L., Velsko, S., Graham, E.K.Zalkin, A.: Optical, mechanical, and thermal properties of barium borate. J. Appl. Phys. 62, 1968 1987CrossRefGoogle Scholar
6Nikogosyan, D.N.: Beta-barium borate (BBO): A review of its properties and applications. Appl. Phys. A: Mater. Sci. Process. 52, 359 1991CrossRefGoogle Scholar
7Ding-Yuan, T.: Nonlinear optical BBO crystals: Growth, properties and applications. Chin. J. Struct. Chem. 19, 112 2000Google Scholar
8Solé, R., Nikolov, V., Pujol, M.C., Gavaldà, Jna., Ruiz, X., Massons, J., Aguiló, M.Díaz, F.: Stabilization of β-BaB2O4 in the system BaB2O4–Na2O–Nd2O3. J. Cryst. Growth 207, 104 1999CrossRefGoogle Scholar
9Zou, X.Tortani, H.: Evaluation of spectroscopic properties of Yb3+ doped glasses. Phys. Rev. B 52, 15889 1995CrossRefGoogle ScholarPubMed
10Khamaganova, T.N., Kuperman, N.M.Bazarova, Zh.G.: The double borates Ba3Ln(BO3)3, Ln = La–Lu. J. Solid State Chem. 145, 33 1999CrossRefGoogle Scholar
11Stewen, C., Contag, K., Larionov, M., Giesen, A.Hügel, H.: A 1 Kw CW thin disc laser. IEEE J. Sel. Top. Quantum Electron 6, 650 2000CrossRefGoogle Scholar
12Pouchou, J.L.Pichoir, F.: A new model for quantitative x-ray microanalysis. 1. Application to the analysis of homogeneous samples. Rech. Aerosp. 3, 13 1984Google Scholar
13Rodríguez-Carvajal, J.: Recent advances in magnetic structure determination by neutron powder diffraction. Physica B 192, 55 1993CrossRefGoogle Scholar
14Stefanovich, S.Yu.Khamaganova, T.N.: Nonlinear optical properties of Ba3R(BO3)3 (R = Y, Ho–Lu) polar crystals. Inorg. Mater. 38, 66 2002CrossRefGoogle Scholar
15Haumesser, P.H., Gaumé, R., Viana, B.Vivien, D.: Determination of laser parameters of ytterbium-doped oxide crystalline materials. J. Opt. Soc. Am. B 19, 2365 2002CrossRefGoogle Scholar
16Gaumé, R., Haumesser, P.H., Antic-Fidancev, E., Porcher, P., Viana, B.Vivien, D.: Crystal field calculations of Yb3+-doped double borate crystals for laser applications. J. Alloys Compd. 341, 160 2002CrossRefGoogle Scholar
17Carvajal, J.J., Solé, R., Gavaldà, Jna., Massons, J., Díaz, F.Aguiló, M.: Phase transitions in RbTiOPO4-doped with niobium. Chem. Mater. 15, 2730 2004CrossRefGoogle Scholar
18Cox, J.R., Keszler, D.A.Huang, J.: The layered borates Ba3M(BO3)3 (M = Dy, Ho, Y, Er, Tm, Yb, Lu and Sc). Chem. Mater. 6, 2008 1994CrossRefGoogle Scholar
19McCumber, D.E.: Einstein relations connecting broadband emission and absorption spectra. Phys. Rev. A 136, 954 1964CrossRefGoogle Scholar
20Deloach, L.D., Payne, S.A., Chase, L.L., Smith, L.K., Kway, W.L.Krupke, W.F.: Evaluation of absorption and emission properties of Yb3+ doped crystals for laser applications. IEEE J. Quantum Electron. 29, 1179 1993CrossRefGoogle Scholar
21Patel, F.D., Honea, E.C., Speth, J., Payne, S.A., Hutcheson, R.Equal, R.: Laser demonstration of Yb3Al5O12 (YbAG) and materials properties of highly doped Yb:YAG. IEEE J. Quantum Electron. 37, 135 2001CrossRefGoogle Scholar
22Pan, S.K., Lu, S., Ding, D.Z., Ren, G.H., Zhang, W.D., Wang, G.F.Pan, J.G.: Growth and spectral properties of Yb3+-doped Ba3Gd(BO3)3 crystal. Chin. J. Struct. Chem. 26, 1153 2007Google Scholar