Hostname: page-component-78c5997874-lj6df Total loading time: 0 Render date: 2024-11-19T09:08:36.411Z Has data issue: false hasContentIssue false

Cubic ZnxMg1−xO thin films grown by plasma-assisted molecular-beam epitaxy for optoelectronic applications

Published online by Cambridge University Press:  31 January 2011

W.V. Schoenfeld*
Affiliation:
CREOL/The College of Optics and Photonics, University of Central Florida, Orlando, Florida 32816
*
b)This author was an editor of this journal during the review and decision stage. For the JMR policy on review and publication of manuscripts authored by editors, please refer to http://www.mrs.org/jmr_policy
Get access

Abstract

Heteroepitaxial ZnxMg1−xO thin films were grown on lattice-matched MgO (100) substrates using radiofrequency plasma-assisted molecular-beam epitaxy. High-quality epilayers with zinc concentrations ranging from x = 0 (MgO) to x = 0.65 were grown and characterized optically, structurally, and electrically. The ZnxMg1−xO films were found to maintain the rocksalt cubic (B1) crystal structure for concentrations z < 0.65, with a linear dependence of lattice constant on Zn concentration. X-ray diffraction (XRD) also revealed the emergence of phase segregation into wurtzite (B4) phase for the highest concentration film. The band gap energy of the films was successfully varied from 4.9 to 6.2 eV (253–200 nm), showing a linear relationship with Zn concentration. The strictly cubic films exhibit roughness on the order of 10 Å and resistivities of approximately 106 Ω·cm.

Type
Articles
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Chen, Y., Bagnall, D.M., Zhu, Z., Sekiechi, T., Park, K., Hiraga, K., Yao, T., Koyama, S., Shen, M.Y., Goto, T.Growth of ZnO single crystal thin films on c-plane (0001) sapphire by plasma enhanced molecular beam epitaxy. J. Cryst. Growth 181, 165 (1997)CrossRefGoogle Scholar
2.Look, D.C., Reynolds, D.C., Sizelove, J.R., Jones, R.L., Litton, C.W., Cantwell, G., Harsch, W.C.Electrical properties of bulk ZnO. Solid State Commun. 105, 399 (1998)CrossRefGoogle Scholar
3.Look, D.C.Recent advances in ZnO materials and devices. Mater. Sci. Eng., B 80, 383 (2001)CrossRefGoogle Scholar
4.Look, D.C., Claflin, B.P-type doping and devices based on ZnO. Phys. Status Solidi B 241, 624 (2004)CrossRefGoogle Scholar
5.Pearton, S., Norton, D., Ip, K., Heo, Y.Recent advances in processing of ZnO. J. Vac. Sci. Technol. B 22, 932 (2004)CrossRefGoogle Scholar
6.Ozgur, U., Alivov, Y.I., Liu, C., Teke, A., Reshchikov, M.A., Dogan, S., Avrutin, V., Cho, S.J., Morkoc, H.A comprehensive review of ZnO materials and devices. J. Appl. Phys. 98, 1 (2005)CrossRefGoogle Scholar
7.Izyumskaya, N., Avrutin, V., Ozgur, U., Alivov, Y.I., Morkoc, H.Preparation and properties of ZnO and devices. Phys. Status Solidi B 244, 1439 (2007)CrossRefGoogle Scholar
8.Klingshirn, C.ZnO: From basics towards applications. Phys. Status Solidi B 244, 3027 (2007)CrossRefGoogle Scholar
9.Ohtomo, A., Kawasaki, M., Koida, T., Masubuchi, K., Koinuma, H., Sakurai, Y., Yoshida, Y., Yasuda, T., Segawa, Y.MgxZn1−xO as a II–VI widegap semiconductor alloy. Appl. Phys. Lett. 72, 2466 (1998)CrossRefGoogle Scholar
10.Sharma, A.K., Narayan, J., Muth, J.F., Teng, C.W., Jin, C., Kvit, A., Kolbas, R.M., Holland, O.W.Optical and structural properties of epitaxial MgxZn1−xO alloys. Appl. Phys. Lett. 75, 3327 (1999)CrossRefGoogle Scholar
11.Makino, T., Segawa, Y., Kawasaki, M., Ohtomo, A., Shiroki, R., Tamura, K., Yasuda, T., Koinuma, H.Band gap engineering based on MgxZn1−xO and CdyZn1−yO ternary alloy films. Appl. Phys. Lett. 78, 1237 (2001)CrossRefGoogle Scholar
12.Yang, W., Hullavarad, S.S., Nagaraj, B., Takeuchi, I., Sharma, R.P., Venkatesan, T., Vispute, R.D., Shen, H.Compositionally-tuned epitaxial cubic MgxZn1−xO on Si(100) for deep ultraviolet photodetectors. Appl. Phys. Lett. 82, 3424 (2003)CrossRefGoogle Scholar
13.Chen, N.B., Sui, C.H.Recent progress in research on MgxZn1−xO alloys. Mater. Sci. Eng., B 126, 16 (2006)CrossRefGoogle Scholar
14.Ryu, Y.R., Lee, T.S., Lubguban, J.A., Corman, A.B., White, H.W., Leem, J.H., Han, M.S., Park, Y.S., Youn, C.J., Kim, W.J.Wide-band gap oxide alloy: BeZnO. Appl. Phys. Lett. 88, 052103 (2006)CrossRefGoogle Scholar
15.Yang, C., Li, X.M., Gu, Y.F., Yu, W.D., Gao, X.D., Zhang, Y.W.ZnO based oxide system with continuous band gap modulation from 3.7 to 4.9 eV. Appl. Phys. Lett. 93, 112114 (2008)CrossRefGoogle Scholar
16.Gruber, T., Kirchner, C., Kling, R., Reuss, F., Waag, A., Bertram, F., Forster, D., Christen, J., Schreck, M.Optical and structural analysis of ZnCdO layers grown by metalorganic vapor-phase epitaxy. Appl. Phys. Lett. 83, 3290 (2003)CrossRefGoogle Scholar
17.Osinsky, A., Dong, J., Xie, J.Q., Hertog, B., Dabiran, A., Chow, P.P., Pearton, S.J., Norton, D.P., Look, D.C., Schoenfeld, W.V., Lopatiuk, O., Chernyak, L., Cheung, M., Cartwright, A.N., Gerhold, M.ZnCdO/ZnMgO and ZnO/AlGaN heterostructures for UV and visible light emittersGaN, AlN, InN and Related Materials edited by M. Kuball, T.H. Myers, J.M. Redwing, and T. Mukai (Mater. Res. Soc. Symp. Proc 892, Warrendale, PA 2006)FF18-01EE18-01Google Scholar
18.Sadofev, S., Blumstengel, S., Cui, J., Puls, J., Rogaschewski, S., Schafer, P., Henneberger, F.Visible band gap ZnCdO heterostructures grown by molecular beam epitaxy. Appl. Phys. Lett. 89, 201907 (2006)CrossRefGoogle Scholar
19.Mares, J.W., Falanga, M., Folks, W.R., Boreman, G., Osinsky, A., Hertog, B., Xie, J.Q., Schoenfeld, W.V.Complex refractive indices of CdxZn1−xO thin films grown by molecular beam epitaxy. J. Electron. Mater. 37, 1665 (2008)CrossRefGoogle Scholar
20.Teng, C.W., Muth, J.F., Ozgur, U., Bergmann, M.J., Everitt, H.O., Sharma, A.K., Jin, C., Narayan, J.Refractive indices and absorption coefficients of MgxZn1−xO alloys. Appl. Phys. Lett. 76, 979 (2000)CrossRefGoogle Scholar
21.Hong, S.K., Chen, Y., Ko, H.J., Wenisch, H., Hanada, T., Yao, T.ZnO and related materials: Plasma-assisted molecular beam epitaxial growth, characterization, and application. J. Electron. Mater. 30, 647 (2001)CrossRefGoogle Scholar
22.Schmidt, R., Rheinlander, B., Schubert, M., Spemann, D., Butz, T., Lenzner, J., Kaidashev, E.M., Lorenz, M., Rahm, A., Semmelhack, H.C., Grundmann, M.Dielectric functions (1 to 5 eV) of wurtzite MgxZn1−xO (x ⩽ 0.29) thin films. Appl. Phys. Lett. 82, 2260 (2003)CrossRefGoogle Scholar
23.Gruber, T., Kirchner, C., Kling, R., Reuss, F., Waag, A.ZnMgO epilayers and ZnO–ZnMgO quantum wells for optoelectronic applications in the blue and UV spectral region. Appl. Phys. Lett. 84, 5359 (2004)CrossRefGoogle Scholar
24.Schmidt-Grund, R., Schubert, M., Rheinländer, B., Fritsch, D., Schmidt, H., Kaidashev, E.M., Lorenz, M., Herzinger, C.M., Grundmann, M.UV-VUV spectroscopic ellipsometry of ternary MgxZn1−xO (0 ⩽ x ⩽ 0.53) thin films. Thin Solid Films 455–456, 500 (2004)CrossRefGoogle Scholar
25.Chen, N.B., Wu, H.Z., Xu, T.N.Refractive indices of cubic-phase MgxZn1−xO thin-film alloys. J. Appl. Phys. 97, 023515 (2005)CrossRefGoogle Scholar
26.Koike, K., Hama, K., Nakashima, I., Sasa, S., Inoue, M., Yano, M.Molecular beam epitaxial growth of Al-doped ZnMgO alloy films for modulation-doped ZnO/ZnMgO heterostructures. Jpn. J. Appl. Phys. Part 1 44, 3822 (2005)CrossRefGoogle Scholar
27.Bundesmann, C., Rahm, A., Lorenz, M., Grundmann, M., Schubert, M.Infrared optical properties of MgxZn1−xO thin films (0 ⩽ x ⩽ 1): Long-wavelength optical phonons and dielectric constants. J. Appl. Phys. 99, 113504 (2006)CrossRefGoogle Scholar
28.Schmidt-Grund, R., Carstens, A., Rheinlander, B., Spemann, D., Hochmut, H., Zimmermann, G., Lorenz, M., Grundmann, M., Herzinger, C.M., Schubert, M.Refractive indices and band-gap properties of rocksalt MgxZn1−xO (0.68 < x < 1). J. Appl. Phys. 99, 123701 (2006)CrossRefGoogle Scholar
29.Polyakov, A.Y., Smirnov, N.B., Govorkov, A.V., Kozhukhova, E.A., Belogorokhov, A.I., Kim, H.S., Norton, D.P., Pearton, S.J.Annealing effects on electrical properties of MgZnO films grown by pulsed laser deposition. J. Appl. Phys. 103, 083704 (2008)CrossRefGoogle Scholar
30.Shukla, G.ZnO/ZnMgO p-n junction light-emitting diodes fabricated on sapphire substrates by pulsed laser deposition. J. Phys. D: Appl. Phys. 42, 075105 (2009)CrossRefGoogle Scholar
31.Ellmer, K.Resistivity of polycrystalline zinc oxide films: Current status and physical limit. J. Phys. D: Appl. Phys. 34, 3097 (2001)CrossRefGoogle Scholar
32.Lorenz, M., Kaidashev, E.M., von Wenckstern, H., Riede, V., Bundesmann, C., Spemann, D., Benndorf, G., Hochmut, H., Rahm, A., Semmelhack, H.C., Grundmann, M.Optical and electrical properties of epitaxial (Mg,Cd)xZn1−xO, ZnO, and ZnO:(Ga, Al) thin films on c-plane sapphire grown by pulsed laser deposition. Solid-State Electron. 47, 2205 (2003)CrossRefGoogle Scholar
33.Cohen, D.J., Ruthe, K.C., Barnett, S.A.Transparent conducting Zn1−xMgxO:(Al, In) thin films. J. Appl. Phys. 96, 459 (2004)CrossRefGoogle Scholar
34.Ellmer, K., Vollweiler, G.Electrical transport parameters of heavily-doped zinc oxide and zinc magnesium oxide single and multilayer films heteroepitaxially grown on oxide single crystals. Thin Solid Films 496, 104 (2006)CrossRefGoogle Scholar
35.Choopun, S., Vispute, R.D., Yang, W., Sharma, R.P., Venkatesan, T., Shen, H.Realization of band gap above 5.0 eV in metastable cubic-phase MgxZn1−xO alloy films. Appl. Phys. Lett. 80, 1529 (2002)CrossRefGoogle Scholar
36.Fujita, S., Takagi, T., Tanaka, H., Fujita, S.Molecular beam epitaxy of MgxZn1−xO layers without wurzite-rocksalt phase mixing from x = 0 to 1 as an effect of ZnO buffer layer. Phys. Status Solidi B 241, 599 (2004)CrossRefGoogle Scholar
37.Hullavarad, S.S., Hullavarad, N.V., Pugel, D.E., Dhar, S., Takeuchi, I., Venkatesan, T., Vispute, R.D.Homo- and hetero-epitaxial growth of hexagonal and cubic MgxZn1−x O alloy thin films by pulsed laser deposition technique. J. Phys. D: Appl. Phys. 40, 4887 (2007)CrossRefGoogle Scholar
38.Qin, J.M., Yao, B., Jia, X.P., Shan, C.X., Zhang, J.Y., Ma, H.A., Shen, D.Z.Characterizations of single-phased cubic Mg0.5Zn0.5O prepared at high pressure and high temperature. J. Phys. D: Appl. Phys. 41, 155408 (2008)CrossRefGoogle Scholar
39.Ogata, K., Koike, K., Tanite, T., Komuro, T., Yan, F., Sasa, S., Inoue, M., Yano, M.ZnO and ZnMgO growth on a-plane sapphire by molecular beam epitaxy. J. Cryst. Growth 251, 623 (2003)CrossRefGoogle Scholar
40.Dong, J., Osinsky, A., Hertog, B., Dabiran, A., Chow, P., Heo, Y., Norton, D., Pearton, S.Development of MgZnO–ZnO–AlGaN heterostructures for ultraviolet light emitting applications. J. Electron. Mater. 34, 416 (2005)CrossRefGoogle Scholar
41.Fujita, M., Sasajima, M., Deesirapipat, Y., Horikoshi, Y.Molecular beam epitaxial growth of hexagonal ZnMgO films on Si(111) substrates using thin MgO buffer layer. J. Cryst. Growth 278, 293 (2005)CrossRefGoogle Scholar
42.Vashaei, Z., Minegishi, T., Suzuki, H., Hanada, T., Cho, M.W., Yao, T.Structural variation of cubic and hexagonal MgxZn1−xO layers grown on MgO(111)/c-sapphire. J. Appl. Phys. 2005, 054911 (2005)CrossRefGoogle Scholar
43.Liu, K.W., Zhang, J.Y., Ma, J.G., Jiang, D.Y., Lu, Y.M., Yao, B., Li, B.H., Zhao, D.X., Zhang, Z.Z., Shen, D.Z.Zn0.8Mg0.2O-based metal-semiconductor-metal photodiodes on quartz for visible-blind ultraviolet detection. J. Phys. D: Appl. Phys. 40, 2765 (2007)CrossRefGoogle Scholar
44.Chen, X., Ruan, K., Wu, G., Bao, D.Tuning electrical properties of transparent p-NiO/n-MgZnO heterojunctions with band gap engineering of MgZnO. Appl. Phys. Lett. 93, 112112 (2008)CrossRefGoogle Scholar
45.Dong, X., Zhu, H., Zhang, B., Liu, W., Li, X., Yang, T., Du, G.Regulate the content of magnesium in MgxZn1−xO films by vacuum anneal. Vacuum 82, 535 (2008)CrossRefGoogle Scholar
46.Kobayashi, J., Sekiwa, H., Miyamoto, M., Ohashi, N., Sakaguchi, I., Wada, Y., Adachi, Y., Haneda, H.Growth of thick zinc magnesium oxide by liquid phase epitaxy. Appl. Phys. Exp. 1, 071201 (2008)CrossRefGoogle Scholar
47.Su, S.C., Lu, Y.M., Zhang, Z.Z., Shan, C.X., Yao, B., Li, B.H., Shen, D.Z., Zhang, J.Y., Zhao, D.X., Fan, X.W.The optical properties of ZnO/ZnMgO single quantum well grown by P-MBE. Appl. Surf. Sci. 254, 7303 (2008)CrossRefGoogle Scholar
48.Wassner, T.A., Laumer, B., Maier, S., Laufer, A., Meyer, B.K., Stutzmann, M., Eickhoff, M.Optical properties and structural characteristics of ZnMgO grown by plasma-assisted molecular-beam epitaxy. J. Appl. Phys. 105, 023505 (2009)CrossRefGoogle Scholar
49.Sadofev, S., Blumstengel, S., Cui, J., Puls, J., Rogaschewski, S., Schafer, P., Sadofev, Y.G., Henneberger, F.Growth of high-quality ZnMgO epilayers and ZnO/ZnMgO quantum well structures by radical-source molecular-beam epitaxy on sapphire. Appl. Phys. Lett. 87, 091903 (2005)CrossRefGoogle Scholar
50.El-Shaer, A., Bakin, A., Al-Suleiman, M., Ivanov, S., Che Mofor, A., Waag, A.Growth of wide band gap wurtzite ZnMgO layers on (0001) Al2O3 by radical-source molecular beam epitaxy. Superlattices Microstruct. 42, 129 (2007)CrossRefGoogle Scholar
51.Liu, K.W., Shen, D.Z., Shan, C.X., Zhang, J.Y., Yao, B., Zhao, D.X., Lu, Y.M., Fan, X.W.Zn0.76Mg0.24O homojunction photodiode for ultraviolet detection. Appl. Phys. Lett. 91, 201106 (2007)CrossRefGoogle Scholar
52.Narayan, J., Sharma, A.K., Kvit, A., Jin, C., Muth, J.F., Holland, O.W.Novel cubic ZnxMg1−xO epitaxial heterostructures on Si(100) substrates. Solid State Commun. 121, 9 (2002)CrossRefGoogle Scholar
53.Chen, J., Shen, W.Z., Chen, N.B., Qiu, D.J., Wu, H.Z.The study of composition non-uniformity in ternary MgxZn1−xO thin films. J. Phys. Condens. Matter 15, L475 (2003)CrossRefGoogle Scholar
54.Yu, P., Wu, H., Chen, N., Xu, T., Lao, Y., Liang, J.Cubic MgxZn1−xO films grown on SiO2 substrates. Opt. Mater. 28, 271 (2006)CrossRefGoogle Scholar
55.Zhou, H.P., Xu, M., Shen, W.Z.Anomalous temperature dependence of optical properties of cubic MgZnO: Effect of carrier localization. Physica B 403, 3585 (2008)CrossRefGoogle Scholar
56.Wang, L.K., Ju, Z.G., Zhang, J.Y., Zheng, J., Shen, D.Z., Yao, B., Zhao, D.X., Zhang, Z.Z., Li, B.H., Shan, C.X.Single-crystalline cubic MgZnO films and their application in deep-ultraviolet optoelectronic devices. Appl. Phys. Lett. 95, 131113 (2009)CrossRefGoogle Scholar
57.Choopun, S., Vispute, R.D., Yang, W., Sharma, R.P., Venkatesan, T., Shen, H.Realization of band gap above 5.0 eV in metastable cubic-phase MgxZn1−xO alloy films. Appl. Phys. Lett. 80, 1529 (2002)CrossRefGoogle Scholar
58.Chen, X., Kang, J.The structural properties of wurtzite and rocksalt MgxZn1−xO. Semicond. Sci. Technol. 23, 025008 (2008)CrossRefGoogle Scholar
59.Summers, G.P., Wilson, T.M., Jeffries, B.T., Tohver, H.T., Chen, Y., Abraham, M.M.Luminescence from oxygen vacancies in MgO crystals thermochemically reduced at high temperatures. Phys. Rev. B 27, 1283 (1983)CrossRefGoogle Scholar
60.Gibson, A., Haydock, R., LaFemina, J.P.Stability vacancy defects in MgO: The role of charge neutrality. Phys. Rev. B 50, 2582 (1994)CrossRefGoogle ScholarPubMed
61.Kotomin, E.A., Popov, A.I.Radiation-induced point defects in simple oxides. Nucl. Instrum. Methods Phys. Res. 141, 1 (1998)CrossRefGoogle Scholar