Article contents
Effect of Fe on microstructures and mechanical properties of an Al–Mg–Si–Cu–Cr–Zr alloy prepared by low frequency electromagnetic casting
Published online by Cambridge University Press: 10 May 2017
Abstract
The effects of different Fe contents (0.168, 0.356 and 0.601 wt%) on microstructures and mechanical properties of the Al–1.6Mg–1.2Si–1.1Cu–0.15Cr–0.15Zr (all in wt%) alloys prepared by low frequency electromagnetic casting process were investigated in the process of solidification, hot extrusion, solid solution and aging treatments. The results show that the increase of Fe content promotes the formation of feathery grains in the process of solidification and the precipitation of another important strengthening phase Q′ with small size. Additionally, it also results in no recrystallization even after solid solution at a high temperature of 550 °C, which is because of the increase number of elliptical shaped and fine DO22-Al3Zr dispersoids (∼70 nm long and ∼35 nm wide) and the spherical or elliptical shaped Fe-containing phases. When Fe content of the alloy increases to 0.356 wt%, both the ultimate tensile strength and yield strength of the alloy-T6 increase by more than 60 MPa and with little cost of ductility.
Keywords
- Type
- Articles
- Information
- Copyright
- Copyright © Materials Research Society 2017
Footnotes
Contributing Editor: Jürgen Eckert
References
REFERENCES
- 2
- Cited by