Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2024-12-23T15:36:24.431Z Has data issue: false hasContentIssue false

Effect of initial composition on distribution of RE211 (422) particles in RE123 superconductors

Published online by Cambridge University Press:  31 January 2011

M. Kambara
Affiliation:
Department of Metallurgy, Graduate School of Engineering, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113, Japan
Y. Watanabe
Affiliation:
Department of Metallurgy, Graduate School of Engineering, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113, Japan
K. Miyake
Affiliation:
Department of Materials, Graduate School of Engineering, Shibaura Institute of Technology, 3-9-14, Shibaura, Minato-ku, Tokyo 108, Japan
A. Endo
Affiliation:
Superconductivity Research Laboratory, ISTEC, 1-10-13, Shinonome, Koto-ku, Tokyo 135, Japan
K. Murata
Affiliation:
Department of Materials, Graduate School of Engineering, Shibaura Institute of Technology, 3-9-14, Shibaura, Minato-ku, Tokyo 108, Japan
Y. Shiohara
Affiliation:
Superconductivity Research Laboratory, ISTEC, 1-10-13, Shinonome, Koto-ku, Tokyo 135, Japan
T. Umeda
Affiliation:
Department of Metallurgy, Graduate School of Engineering, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113, Japan
Get access

Abstract

Microstructure in melt-textured bulk RE1Ba2Cu3O6+d crystals (RE123; RE = Sm, Nd) was investigated, changing the initial composition from the tie-line composition of RE123–Sm2Ba1Cu1O5 (Sm211)/Nd4Ba2Cu2O10 (Nd422) to the Ba-enriched side. It was found that the Sm211/Nd422 particle size decreased in the liquid with increasing the Ba/Cu ratio of the initial composition, and this tendency was also found in the grown Sm123 crystals. Composition of the Sm123 grown crystal could be controlled by selecting the Ba-enriched initial composition to obtain an almost stoichiometric compound, which resulted in higher Tc values. Furthermore, the Jc values also increased under low magnetic fields due to the significant decrease of Sm211 particle size. Therefore, changing the initial composition toward the Ba-enriched side was found to be a new process to enhance both Jc and Tc values simultaneously.

Type
Articles
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Maeda, A., Yabe, T., Uchinokura, K., and Tanaka, S., Jpn. J. Appl. Phys. 26, L1368 (1987).CrossRefGoogle Scholar
2.Yoo, S. I. and McCallum, R. W., Physica C 210, 147 (1993).CrossRefGoogle Scholar
3.Wada, T., Suzuki, N., Maeda, T., Maeda, A., Uchida, S., Uchinokura, K., and Tanaka, S., Appl. Phys. Lett. 52, 1989 (1988).CrossRefGoogle Scholar
4.Shaked, H., Veal, B. W., Faber, J. Jr, Hitterman, R. L., Balachandran, U., Tomlins, G., Shi, H., Morss, L., and Paulikas, A. P., Phys. Rev. B 41 (7), 4173 (1990).CrossRefGoogle Scholar
5.Zhang, K., Dabrowski, B., Segre, C. U., Hinks, D. G., Schuller, I. K., Jorgensen, J. D., and Slaski, M., J. Phys. C: Solid State Phys. 20, L935 (1987).CrossRefGoogle Scholar
6.Ng, W. W., Cook, L. P., Paretzkin, B., Hill, M. D., and Stalick, J. K., J. Am. Ceram. Soc. 77 (9), 2354 (1994).Google Scholar
7.Murakami, M., Yoo, S. I., Higuchi, T., Sakai, N., Weltz, J., Koshizuka, N., and Tanaka, S., Jpn. J. Appl. Phys. 33, L715 (1994).CrossRefGoogle Scholar
8.Yoo, S. I., Sakai, N., Takaichi, H., Higuchi, T., and Murakami, M., Appl. Phys. Lett. 65, 633 (1994).CrossRefGoogle Scholar
9.Yoo, S. I., Murakami, M., Sakai, N., Higuchi, T., and Tanaka, S., Jpn. J. Appl. Phys. 33, L1000 (1994).CrossRefGoogle Scholar
10.Nakamura, M., Kutami, H., and Shiohara, Y., Physica C 260, 297 (1996).CrossRefGoogle Scholar
11.Yoshizumi, M., Kambara, M., Shiohara, Y., and Umeda, T., Extended Abstracts–Int. Workshop on Superconductivity, Hawaii (1997), p. 295.Google Scholar
12.Hodorowicz, S. A., Czerwwonka, J., and Eick, H. A., J. Solid State Chem. 88, 391 (1990).CrossRefGoogle Scholar
13.Wong, W., Paretzkin, B., and Fuller, E. R. Jr, J. Solid State Chem. 85, 117 (1990).CrossRefGoogle Scholar
14.Kramer, M. J., Wu, H., Dennis, K.W., Polizin, B. I., Falzgraf, D. K., and McCallum, R. W., Advances in Superconductivity, edited by Hayakawa, H. and Enomoto, Y. (Springer-Verlag, Tokyo, 1995), Vol. 2, pp. 385390.Google Scholar
15.Osamura, K. and Zhang, W., Z. Metallkd. 84, 522 (1993).Google Scholar
16.Kambara, M., Tagami, M., Yao, X., Goodilin, E. A., Shiohara, Y., and Umeda, T., unpublished.Google Scholar
17.Ogawa, N., Hirabayashi, I., and Tanaka, S., Physica C 177, 101 (1991).CrossRefGoogle Scholar
18.Watanabe, Y., Miyake, K., Endo, A., Murata, K., Shiohara, Y., and Umeda, T., Physica C 280, 215 (1997).CrossRefGoogle Scholar
19.Yoo, S. I., Murakami, M., Sakai, N., Ohyama, T., Higuchi, T., Watahiki, M., and Takahashi, M., J. Elect. Mater. 24, 1923 (1995).CrossRefGoogle Scholar
20.Mathuoka, S., Sumida, M., Umeda, T., and Shiohara, Y., Proceedings, Int. Symposium on Superconductivity (ISS'96), 781 (1996).Google Scholar
21.Gyorgy, E. M., van Dover, R. B., Jackson, K. A., Schneemeyer, L. F., and Waszcazk, J. V., Appl. Phys. Lett. 55, 283 (1989).CrossRefGoogle Scholar
22.Izumi, T., Nakamura, Y., and Shiohara, Y., J. Mater. Res. 8, 1240 (1993).CrossRefGoogle Scholar
23.Endo, A., Chauhan, H. S., Nakamura, Y., and Shiohara, Y., Extended Abstracts–Int. Workshop on Superconductivity, Maui, Hawaii (1995), p. 59.Google Scholar
24.Yao, X., Kambara, M., Nakamura, M., Umeda, T., and Shiohara, Y., Jpn. J. Appl. Phys. 36, L400 (1997).CrossRefGoogle Scholar