Hostname: page-component-586b7cd67f-dlnhk Total loading time: 0 Render date: 2024-11-23T02:47:40.545Z Has data issue: false hasContentIssue false

The effects of postdeposition annealing conditions on structure and created defects in Zn0.90Co0.10O thin films deposited on Si(100) substrate

Published online by Cambridge University Press:  23 January 2013

Musa Mutlu Can*
Affiliation:
Faculty of Engineering and Natural Sciences, Sabancı University, Tuzla 34956, İstanbul, Turkey; and Nanotechnology Research and Application Center (SUNUM), Sabancı University, Tuzla 34956, İstanbul, Turkey
Tezer Fırat
Affiliation:
Department of Physics Engineering, Hacettepe University, 06800 Beytepe, Ankara, Turkey
S.Ismat Shah
Affiliation:
Department of Material Science and Engineering, Department of Physics and Astronomy, University of Delaware, Newark, Delaware 19716
Feray Bakan
Affiliation:
Faculty of Engineering and Natural Sciences, Sabancı University, Tuzla 34956, İstanbul, Turkey; and Nanotechnology Research and Application Center (SUNUM), Sabancı University, Tuzla 34956, İstanbul, Turkey
Ahmet Oral
Affiliation:
Faculty of Engineering and Natural Sciences, Sabancı University, Tuzla 34956, İstanbul, Turkey; and Nanotechnology Research and Application Center (SUNUM), Sabancı University, Tuzla 34956, İstanbul, Turkey
*
a)Address all correspondence to this author. e-mail: musamutlucan@gmail.com
Get access

Abstract

We analyze the effect of postdeposition annealing conditions on both the structure and the created defects in Zn0.90Co0.10O thin films, which deposited on the Si(100) substrates by the radio frequency magnetron sputtering technique using a homemade target. The dependence of the number and distribution of defects in homogeneously substituted Co+2 for Zn+2 ions in ZnO lattice on the annealing conditions is investigated. Orientations of thin films are in the [0002] direction with a surface roughness changing from 67 ± 2 nm to 25.8 ± 0.6 nm by annealing. The Co+2 ion substitution, changing from 7.5% ± 0.3% to 8.8 ± 0.3%, leads to the formation of Zn–O–Co bonds instead of Zn–O–Zn bonds and splitting of the Co 2p energy level to Co 2p1/2 and Co 2p3/2 with an energy difference of 15.67 ± 0.06 eV. The defects in the lattice are revealed from the correlations between Zn–O–Co bonds and intensity of the Raman peak at around 691 cm−1. In addition, the asymmetry changes of O 1s peak positions in the x-ray photoelectron spectra are in agreement with the Raman results.

Type
Articles
Copyright
Copyright © Materials Research Society 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Fukumura, T., Yamada, Y., Toyosaki, H., Hasegawa, T., Koinuma, H., and Kawasaki, M.: Exploration of oxide-based diluted magnetic semiconductors toward transparent spintronics. Appl. Surf. Sci. 223, 6267 (2004).CrossRefGoogle Scholar
Fitzgerald, C.B., Venkatesan, M., Dorneles, L.S., Gunning, R., Stamenov, P., Coey, J.M.D., Stampe, P.A., Kennedy, R.J., Moreira, E.C., and Sias, U.S.: Magnetism in dilute magnetic oxide thin films based on SnO2 . Phys. Rev. B 74, 115307 (2006).CrossRefGoogle Scholar
Calderon, M.J. and Das Sarma, S.: Theory of carrier mediated ferromagnetism in dilute magnetic oxides. Ann. Phys. 322, 26182634 (2007).CrossRefGoogle Scholar
Matsukura, F., Ohno, H., and Dietl, T.: In Handbook of Magnetic Materials, edited by Buschow, K.H.J. (Elsevier Science, Amsterdam, Netherlands, 2002).Google Scholar
Pearton, S.J., Heo, W.H., Ivill, M., Norton, D.P., and Steiner, T.: Dilute magnetic semiconducting oxides. Semicond. Sci. Technol. 19, R59R74 (2004).CrossRefGoogle Scholar
Risbud, A.S., Spaldin, N.A., Chen, Z.Q., Stemmer, S., and Seshadri, R.: Magnetism in polycrystalline cobalt-substituted zinc oxide. Phys. Rev. B 68, 205202 (2003).CrossRefGoogle Scholar
Peng, Y.Z., Liew, T., Song, W.D., An, C.W., Teo, K.L., and Chong, T.C.: Structural and optical properties of Co-doped ZnO thin film. J. Supercond. 18(1), 97103 (2005).CrossRefGoogle Scholar
Park, J.H., Kim, M.G., Jang, H.M., Ryu, S., and Kim, Y.M.: Co-metal clustering as the origin of ferromagnetism in Co-doped ZnO thin films. Appl. Phys. Lett. 84(8), 13381340 (2004).CrossRefGoogle Scholar
Norton, D.P., Overberg, M.E., Pearton, S.J., Pruessner, K., Budai, J.D., Boatner, L.A., Chisholm, M.F., Lee, J.S., Khim, Z.G., Park, Y.D., and Wilson, R.G.: Ferromagnetism in cobalt-implanted ZnO. Appl. Phys. Lett. 83(26), 54885490 (2003).CrossRefGoogle Scholar
Sati, P., Hayn, R., Kuzian, R., Regnier, S., Schafer, S., Stepanov, A., Morhain, C., Deparis, C., Laugt, M., Goiran, M., and Golacki, Z.: Magnetic Anisotropy of Co2+ as Signature of Intrinsic Ferromagnetism in ZnO:Co. Phys. Rev. Lett. 96, 017203 (2003).CrossRefGoogle Scholar
Naeem, M., Hasanain, S.K., Kobayashi, M., Ishida, Y., Fujimori, A., Buzby, S., and Shah, S.I.: Effect of reducing atmosphere on the magnetism of Zn1−xCoxO (0 ≤ x ≤ 0.10) nanoparticles. Nanotechnology 17, 26752680 (2006).CrossRefGoogle Scholar
Hays, J., Reddy, K.M., Graces, N.Y., Engelhard, M.H., Shutthanandan, V., Luo, M., Xu, C., Giles, N.C., Wang, C., Thevuthasan, S., and Punnoose, A.: Effect of Co doping on the structural, optical and magnetic properties of ZnO nanoparticles. J. Phys. Condens. Matter 19, 266203 (2007).CrossRefGoogle ScholarPubMed
Fitzgerald, C.B., Venkatesan, M., Lunney, J.G., Dorneles, L.S., and Coey, J.M.D.: Cobalt-doped ZnO–a room temperature dilute magnetic semiconductor. Appl. Surf. Sci. 247, 493496 (2005).CrossRefGoogle Scholar
Thota, S., Dutta, T., and Kumar, J.: On the sol–gel synthesis and thermal, structural, and magnetic studies of transition metal (Ni, Co, Mn) containing ZnO powders. J. Phys. Condens. Matter 18, 24732486 (2006).CrossRefGoogle Scholar
Mandal, S.K., Das, A.K., Nath, T.K., Karmakar, D., and Satpati, B.: Microstructural and magnetic properties of ZnO:TM (TM = Co, Mn) diluted magnetic semiconducting nanoparticles. J. Appl. Phys. 100, 104315 (2006).CrossRefGoogle Scholar
Kittilstved, K.R., Liu, W.K., and Gamelin, D.R.: Electronic structure origins of polarity-dependent high-TC ferromagnetism in oxide-diluted magnetic semiconductors. Nat. Mater. 5, 291297 (2006).CrossRefGoogle ScholarPubMed
Wang, Q., Sun, Q., Chen, G., Kawazoe, Y., and Jena, P.: Vacancy-induced magnetism in ZnO thin films and nanowires. Phys. Rev. B 77, 205411 (2008).CrossRefGoogle Scholar
Khare, N., Kappers, M. J., Wei, M., Blamire, M. G., and MacManus-Driscoll, J. L.: Defect-induced ferromagnetism in Co-doped ZnO. Adv. Mater. 18(11), 14491452 (2006).CrossRefGoogle Scholar
Song, C., Pan, S.N., Liu, X.J., Li, X.W., Zeng, F., Yan, W.S., He, B., and Pan, F.: Evidence of structural defect enhanced room-temperature ferromagnetism in Co-doped ZnO. J. Phys. Condens. Matter 19, 176229 (2007).CrossRefGoogle ScholarPubMed
Pemmaraju, C.D., Hanafin, R., Archer, T., Braun, H.B., and Sanvito, S.: Impurity-ion pair induced high-temperature ferromagnetism in Co-doped ZnO. Phys. Rev. B 78, 054428 (2008).CrossRefGoogle Scholar
Berciu, M. and Bhatt, R.N.: Effects of disorder on ferromagnetism in diluted magnetic semiconductors. Phys. Rev. Lett. 87, 107203 (2001).CrossRefGoogle ScholarPubMed
Coey, J.M.D., Stamenov, P., Gunning, R.D., Venkatesan, M., and Paul, K.: Ferromagnetism in defect-ridden oxides and related materials. New J. Phys. 12, 053025 (2010).CrossRefGoogle Scholar
Chakraborti, D., Trichy, G.R., Prater, J.T., and Narayan, J.: The effect of oxygen annealing on ZnO:Cu and ZnO:(Cu, Al) diluted magnetic semiconductors. J. Phys. D: Appl. Phys. 40, 76067613 (2007).CrossRefGoogle Scholar
Bang, S., Lee, S., Park, J., Park, S., Ko, Y., Choi, C., Chang, H., Park, H., and Jeon, H.: The effects of post-annealing on the performance of ZnO thin film transistors. Thin Solid Films 519, 81098113 (2011).CrossRefGoogle Scholar
Wang, T., Liu, Y., Fang, Q., Xuc, Y., Li, G., Sun, Z., Wu, M., Li, J., and He, H.: Morphology and optical properties of Co doped ZnO textured thin films. J. Alloys Compd. 509, 91169122 (2011).CrossRefGoogle Scholar
Can, M.M., Shah, S.I., Doty, M.F., Haughn, C.R., and Fırat, T.: Electrical and optical properties of point defects in ZnO thin films. J. Phys. D: Appl. Phys. 45, 195104 (2012).CrossRefGoogle Scholar
Al-Kuhaili, M.F., Durrani, S.M.A., Bakhtiari, I.A., and Saleem, M.: Optical constants of vacuum annealed radio frequency (RF) magnetron sputtered zinc oxide thin films. Opt. Commun. 285, 44054412 (2012).CrossRefGoogle Scholar
Guillen, C. and Herrero, J.: Transparent films on polymers for photovoltaic applications. Vacuum 84, 924929 (2010).Google Scholar
Srivastava, A.K., Praveen, , Arora, M., Gupta, S.K., Chakraborty, B.R., Chandra, S., Toyoda, S., and Bahadur, H.: Nanostructural features and optical performance of RF magnetron sputtered ZnO thin films. J. Mater. Sci. Technol. 26(11), 986990 (2010).CrossRefGoogle Scholar
Zhu, Y.F., Zhou, G.H., Ding, H.Y., Liu, A.H., Lin, Y.B., and Dong, Y.W.: Synthesis and characterization of highly-ordered ZnO/PbS core/shell heterostructures. Superlattices Microstruct. 50, 549556 (2011).CrossRefGoogle Scholar
Layek, A., Manna, B., and Chowdhury, A.: Carrier recombination dynamics through defect states of ZnO nanocrystals: From nanoparticles to nanorods. Chem. Phys. Lett. 539540, 133138 (2012).CrossRefGoogle Scholar
Ahn, M-W., Park, K-S., Heo, J-H., Park, J-G., Kim, D-W., Choi, K.J., Lee, J-H., Hong, S-H.: Gas sensing properties of defect-controlled ZnO-nanowire gas sensor. Appl. Phys. Lett. 93, 263103 (2008).CrossRefGoogle Scholar
Jiang, H., Wang, H., and Wang, X.: Facile and mild preparation of fluorescent ZnO nanosheets and their bioimaging applications. Appl. Surf. Sci. 257, 69916995 (2011).CrossRefGoogle Scholar
Lee, H-J., Jeong, S-Y., Cho, C.R., and Park, C.H.: Study of diluted magnetic semiconductor: Co-doped ZnO. Appl. Phys. Lett. 81, 40204022 (2002).CrossRefGoogle Scholar
Jin, Z., Fukumura, T., Kawasaki, M., Ando, K., Saito, H., Sekiguchi, T., Yoo, Y.Z., Murakami, M., Matsumoto, Y., Hasegawa, T., and Koinuma, H.: High throughput fabrication of transition-metal-doped epitaxial ZnO thin films: A series of oxide-diluted magnetic semiconductors and their properties. Appl. Phys. Lett. 78, 38243826 (2001).CrossRefGoogle Scholar
Zhang, Y.B., Liu, Q., Sritharan, T., Gan, C.L., and Li, S.: Pulsed laser ablation of preferentially orientated ZnO:Co diluted magnetic semiconducting thin films on Si substrates. Appl. Phys. Lett. 89, 042510 (2006).CrossRefGoogle Scholar
Shon, Y., Kwon, Y.H., Yuldashev, S.U., Park, Y.S., Fu, D.J., Kim, D.Y., Kim, H.S., and Kang, T.W.: Diluted magnetic semiconductor of p-type GaN epilayers implanted with Mn+ ions. J. Appl. Phys. 93, 15461548 (2003).CrossRefGoogle Scholar
Kim, K.J. and Park, Y.R.: Spectroscopic ellipsometry study of optical transitions in Zn1−xCoxO alloys. Appl. Phys. Lett. 81, 14201422 (2002).CrossRefGoogle Scholar
Zhang, S.B., Wei, S-H., and Zunger, A.: Intrinsic n-type versus p-type doping asymmetry and the defect physics of ZnO. Phys. Rev. B 63, 075205 (2001).CrossRefGoogle Scholar
Ravichandran, C., Srinivasan, G., Lennon, C., Sivananthan, S., and Kumar, J.: Influence of post-deposition annealing on the structural, optical and electrical properties of Li and Mg co-doped ZnO thin films deposited by sol–gel technique. Superlattices Microstruct. 49, 527536 (2011).CrossRefGoogle Scholar
Straumal, B.B., Protasova, S.G., Mazilkin, A.A., Myatiev, A.A., Straumal, P.B., Schütz, G., Goering, E., and Baretzky, B.: Ferromagnetic properties of the Mn-doped nanograined ZnO films. J. Appl. Phys. 108, 073923 (2010).CrossRefGoogle Scholar
Subramanian, M., Tanemura, M., Hihara, T., Ganesan, V., Soga, T., and Jimbo, T.: Magnetic anisotropy in nanocrystalline Co-doped ZnO thin films. Chem. Phys. Lett. 487, 97100 (2010).CrossRefGoogle Scholar
Can, M.M., Fırat, T., and Özcan, Ş.: Dominancy of antiferromagnetism in Zn1–xCoxO diluted magnetic semiconductors. J. Mater. Sci. 46, 18301838 (2011).CrossRefGoogle Scholar
Can, M.M., Fırat, T., and Özcan, Ş.: Structural, optic, and magnetic investigation of the synthesized ZnO and Zn0.99Co0.01O semiconductors via solid state reaction. IEEE Trans. Magn. 46(6), 18091812 (2010).CrossRefGoogle Scholar
Reimer, L.: Scanning Electron Microscopy: Physics of Image Formation and Microanalysis (Springer, Berlin, Germany, 1998); pp. 208218.Google Scholar
Husna, J., Aliyu, M.M., Islam, M.A., Chelvanathan, P., Hamzah, N.R., Hossain, M.S., Karim, M.R., and Amin, N.: Influence of annealing temperature on the properties of ZnO thin films grown by sputtering. Energy Procedia 25, 5561 (2012).CrossRefGoogle Scholar
Hsieh, P.T., Chen, Y.C., Lee, M.S., Kao, K.S., Kao, M.C., and Houng, M.P.: The effects of oxygen concentration on ultraviolet luminescence of ZnO films by sol-gel technology and annealing. J. Sol-Gel Sci. Technol. 47, 16 (2008).CrossRefGoogle Scholar
Khairnar, A.G. and Mahajan, A.M.: Effect of post-deposition annealing temperature on RF-sputtered HfO2 thin film for advanced CMOS technology. Solid State Sci. 15, 24–28 (2013).CrossRefGoogle Scholar
Sahu, D.R. and Huang, J-L.: The properties of ZnO/Cu/ZnO multilayer films before and after annealing in the different atmosphere. Thin Solid Films 516, 208211 (2007).CrossRefGoogle Scholar
Wagner, C.D., Riggs, W.M., Davis, L.E., and Moulder, J.F.: Handbook of X-ray Photoelectron Spectroscopy, G.E. Muilenberg, ed. (Perkin-Elmer, Minnesota, 1979); pp. 82–83, 88–89, 172–173.Google Scholar
Lai, L-W. and Lee, C-T.: Investigation of optical and electrical properties of ZnO thin films. Mater. Chem. Phys. 110, 393396 (2008).CrossRefGoogle Scholar
Hsieh, P-T., Chen, Y-C., Kao, K-S., and Wang, C-M.: Luminescence mechanism of ZnO thin film investigated by XPS measurement. Appl. Phys. A 90, 317321 (2008).CrossRefGoogle Scholar
Sun, S-Y., Huang, J-L., and Lii, D-F.: Effects of oxygen contents on the electrical and optical properties of indium molybdenum oxide films fabricated by high density plasma evaporation. J Vac: Sci. Technol. 22, 1235 (2004).Google Scholar
Fernandes, A.J., Chen, P.P-T., Wintrebert-Fouquet, M., Timmers, H., Shrestha, S.K., Hirshy, H., and Perks, R.M., and Usher, B.F.: The nature of nitrogen related point defects in common forms of InN. J. Appl. Phys. 101, 123702 (2007).Google Scholar
Lennon, C., Tapia, R.B., Kodama, R., Chang, Y., Sivananthan, S., and Deshpande, M.: Effects of annealing in a partially reducing atmosphere on sputtered Al-doped ZnO thin films. J. Electron. Mater. 38(8), 15681573 (2009).CrossRefGoogle Scholar
Xu, X.L., Lau, S.P., Chen, J.S., Chen, G.Y., and Tay, B.K.: Polycrystalline ZnO thin films on Si (100) deposited by filtered cathodic vacuum arc. J. Cryst. Growth 223, 201205 (2001).CrossRefGoogle Scholar
Zeng, J.N., Low, J.K., Ren, Z.M., Liew, T., and Lu, Y.F.: Effect of deposition conditions on optical and electrical properties of ZnO films prepared by pulsed laser deposition. Appl. Surf. Sci. 197198, 362367 (2002).CrossRefGoogle Scholar
Sudakar, C., Kharel, P., Lawes, G., Suryanarayanan, R., Naik, R., and Naik, V.M.: Raman spectroscopic studies of oxygen defects in Co-doped ZnO films exhibiting room-temperature ferromagnetism. J. Phys. Condens. Mater. 19 026212 (2007).CrossRefGoogle Scholar