Hostname: page-component-7479d7b7d-wxhwt Total loading time: 0 Render date: 2024-07-12T05:41:26.677Z Has data issue: false hasContentIssue false

First-principles estimate of the order–disorder transition in Ba(ZnxNb1−x)O3 microwave dielectrics

Published online by Cambridge University Press:  31 January 2011

Takeshi Takahashi
Affiliation:
Department of Materials Science and Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139
Eric J. Wu
Affiliation:
Department of Materials Science and Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139
Gerbrand Ceder
Affiliation:
Department of Materials Science and Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139
Get access

Abstract

The B-site cation ordering in Ba(Zn1/3Nb2/3)O3 was studied using a combination of first-principles energy calculations, a cluster expansion technique, and Monte Carlo simulations. Our calculations indicate that the ground state is a 1:2 ordered hexagonal structure, in contrast to x-ray diffraction observations, but consistent with recent Raman work by Kim et al. The order–disorder transition between the 1:2 ordered phase and the cubic perovskite phase is predicted to occur at approximately 2480 K. This prediction indicates that Ba(Zn1/3Nb2/3)O3 in equilibrium should be fully ordered at all practical temperatures. These results indicate that Ba(Zn1/3Nb2/3)O3, previously considered to be disordered, may be ordered on a local scale, consistent with its good microwave characteristics.

Type
Rapid Communications
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Nomura, S., Toyama, K., and Kaneta, K., Jpn. J. Appl. Phys. 21, 624 (1982).CrossRefGoogle Scholar
2. Kawashima, S., Nishida, M., Ueda, I., and Ouchi, H., J. Am. Ceram. Soc. 66, 421 (1983).CrossRefGoogle Scholar
3. Tamura, H., Konoike, T., Sakabe, Y., and Wakino, K., J. Am. Ceram. Soc. 67, C59 (1984).CrossRefGoogle Scholar
4. Desu, S.B. and O'Bryan, H.M., J. Am. Ceram. Soc. 68, 546 (1985).CrossRefGoogle Scholar
5. Wakino, K., Sagala, D.A., and Tamura, H., Jpn. J. Appl. Phys. 24(Sup. 24-2), 1042 (1985).CrossRefGoogle Scholar
6. Tochi, K., Takeuchi, N., and Emura, S., J. Am. Ceram. Soc. 72, 158 (1989).CrossRefGoogle Scholar
7. Tamura, H., Sagala, D.A., and Wakino, K., Jpn. J. Appl. Phys. 25, 787 (1986).CrossRefGoogle Scholar
8. Tamura, H., Jpn. J. Appl. Phys. 32(6A), 2774 (1993).CrossRefGoogle Scholar
9. Nagai, T., Sugiyama, M., Sando, M., and Niihara, K., Jpn. J. Appl. Phys. 36(3A), 1146 (1997).CrossRefGoogle Scholar
10. Chai, L. and Davies, P., J. Am. Ceram. Soc. 80, 3193 (1997).CrossRefGoogle Scholar
11. Sagala, D.A. and Nambu, S., J. Phys. Soc. Jpn. 61, 1791 (1992).CrossRefGoogle Scholar
12. McCormack, R. and Burton, B.P., Comp. Mater. Sci. 8, 153 (1997).CrossRefGoogle Scholar
13. McCormack, R. and Burton, B.P., in Solid-State Chemistry of Inorganic Materials, edited by Davies, P.K., Jackson, A.J., Torardi, C.C., and Vanderah, T.A. (Mater. Res. Soc. Symp. Proc. 453, Pittsburgh, PA, 1997), pp. 449454.Google Scholar
14. Bellaiche, L. and Vanderbilt, D., Phys. Rev. Lett. 81, 1318 (1998).CrossRefGoogle Scholar
15. Miura, T., Takahashi, T., and Kobayashi, M., Inst. Electron. Inf. & Commun. Eng. Trans. Electron. E77-C(6), 900 (1994).Google Scholar
16. Takahashi, T., Iijima, Y., Kobayashi, M., and Miura, T., Jpn. J. Appl. Phys. 33(9B), 5510 (1994).CrossRefGoogle Scholar
17. Takahashi, T., Iijima, Y., and Miura, T., IEEE Microwave Theory Tech. Symposium (IEEE, New York, 1997), p. 1683.Google Scholar
18. Galasso, F., Barrante, J.R., and Katz, L., J. Am. Chem. Soc. 83, 2830 (1961).CrossRefGoogle Scholar
19. Galasso, F. and Pyle, J., Inorg. Chem. 2, 482 (1963).CrossRefGoogle Scholar
20. Jacobson, A.J., Collins, B.M., and Fender, B.E., Acta Crystallogr. B. 32, 1083 (1976).CrossRefGoogle Scholar
21. Matsumoto, K., Hiuga, T., Takada, K., and Ichimura, H., IEEE International Symposium on Applications of Ferroelectrics 118 (IEEE, New York, 1986).Google Scholar
22. Matsumoto, H., Tamura, H., and Wakino, K., Jpn. J. Appl. Phys. 30(9B), 2347 (1991).CrossRefGoogle Scholar
23. Kim, I.T. and Kim, Y.H., J. Mater. Res. 12, 518 (1997).CrossRefGoogle Scholar
24. Onoda, M., Kuwata, J., Kaneta, K., Toyama, K., and Nomura, S., Jpn. J. Appl. Phys. 21, 1707 (1982).CrossRefGoogle Scholar
25. Kawashima, S., Nishida, M., Ueda, I., and Ouchi, H., National Tech. Rep. 28, 116 (1982).Google Scholar
26. Nomura, S., Ferroelectrics 49, 61 (1983).CrossRefGoogle Scholar
27. Nomura, S., Toyama, K., and Kaneta, K., Jpn. J. Appl. Phys. 22(Sup. 22-2), 83 (1983).CrossRefGoogle Scholar
28. Endo, K., Fujimoto, K., and Murakawa, K., J. Am. Ceram. Soc. 70, C215 (1987).CrossRefGoogle Scholar
29. Hiuga, T. and Matsumoto, K., Jpn. J. Appl. Phys. 28(Sup. 28-2), 56 (1989).CrossRefGoogle Scholar
30. Kim, I.T., Hong, K.S., and Yoon, S.J., J. Mat. Sci. 30, 514 (1995).CrossRefGoogle Scholar
31. Kim, B.K., Hamaguchi, H., Kim, I.T., and Hong, K.S., J. Am. Ceram. Soc. 78, 3117 (1995).CrossRefGoogle Scholar
32. Bellaiche, L. and Vanderbilt, D., Phys. Rev. Lett. 81, 1318 (1998).CrossRefGoogle Scholar
33. Bellaiche, L., Padilla, J., and Vanderbilt, D., Phys. Rev. B 59, 1834 (1999).CrossRefGoogle Scholar
34. Burton, B.P., Phys. Rev. B. 59, 6087 (1999).CrossRefGoogle Scholar
35. Burton, B.P., Phys. Rev. B. 60, R12542 (1999).CrossRefGoogle Scholar
36. Takahashi, T., Wu, E.J., Van der Ven, A., and Ceder, G., Jpn. J. Appl. Phys. 39, 1241 (2000).CrossRefGoogle Scholar
37. Zunger, A., Wei, S-H., Ferreira, L., and Bernard, J.E., Phys. Rev. Lett. 65, 353 (1990).CrossRefGoogle Scholar
38. Kresse, G. and Furthmüller, J., Phys. Rev. B 54, 169 (1996).CrossRefGoogle Scholar
39. Kresse, G. and Furthmüller, J., Comp. Mater. Sci. 6, 15 (1996).CrossRefGoogle Scholar
40. Vanderbilt, D., Phys. Rev. B 41, 7892 (1990).CrossRefGoogle Scholar
41. Kresse, G. and Hafner, J., J. Phys. Condens. Matter 6, 8245 (1994).CrossRefGoogle Scholar
42. Nomura, S.. Ferroelectrics. 49, 61 (1983).CrossRefGoogle Scholar
43. Sanchez, J.M., Ducastelle, F., and Gratias, D., Physica A 128, 334 (1984).CrossRefGoogle Scholar
44. Ducastelle, F., Order and Phase Stability in Alloys (Kluwer-Dordrecht, Amsterdam, The Netherlands, 1990).Google Scholar
45. de Fontaine, D., Solid State Phys. 47, 33 (1994).CrossRefGoogle Scholar
46. Ceder, G., in Encyclopedia of Advanced Materials, edited by Bloor, D., Brook, R.J., Flemings, M.C., and Mahajan, S. (Pergamon, New York, 1994), p. 1951.Google Scholar
47. Ceder, G., Kohan, A.F., Aydinol, M.K., Tepesch, P.D., and Van der Ven, A., J. Am. Ceram. Soc. 81, 517 (1998).CrossRefGoogle Scholar
48. Ceder, G., Asta, M., Carter, W.C., Sluiter, M., Mann, M.E., Kraitchman, M., and de Fontaine, D., Phys. Rev. B 41, 8698 (1990).CrossRefGoogle Scholar
49. Van der Ven, A., Aydinol, M.K., and Ceder, G., J. Electrochem. Soc. 145, 2149 (1998).CrossRefGoogle Scholar
50. Van der Ven, A., Aydinol, M.K., Ceder, G., Kresse, G., and Hafner, J., Phys. Rev. B. 58, 2975 (1998).CrossRefGoogle Scholar
51. Magri, R., Wei, S-H., and Zunger, A., Phys. Rev. B. 42, 11388 (1990).CrossRefGoogle Scholar
52. Ceder, G., Garbulsky, G.D., and Tepesch, P.D., Phys. Rev. B. 51, 11257 (1995).CrossRefGoogle Scholar
53. Wolverton, C. and Zunger, A., Phys. Rev. B 51, 6876 (1995).CrossRefGoogle Scholar
54. Binder, K. and Heermann, D.W., Monte Carlo Simulation in Statistical Physics (Springer-Verlag, Berlin, Germany, 1988).CrossRefGoogle Scholar
55. Connolly, J.W.D and Williams, A.R., Phys. Rev. B 27, 5169 (1983).CrossRefGoogle Scholar
56. Asta, M., McCormack, R., and de Fontaine, D., Phys. Rev. B. 48, 748 (1993).CrossRefGoogle Scholar
57. Kohan, A.F., Tepesch, P.D., Ceder, G., and Wolverton, C., Comp. Mater. Sci. 9, 389 (1998).CrossRefGoogle Scholar