Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-23T15:44:13.580Z Has data issue: false hasContentIssue false

Gravity-driven Beryllium Transport in ZrTiCuNiBe Melt and its Influence on Glass Formation

Published online by Cambridge University Press:  03 March 2011

C. Yang
Affiliation:
Key Laboratory of Metastable Materials Science & Technology, Yanshan University, Qinhuangdao 066004, People’s Republic of China; and Institute of Physics, Chinese Academy of Sciences, Beijing 100080, People’s Republic of China
R.P. Liu*
Affiliation:
Key Laboratory of Metastable Materials Science & Technology, Yanshan University, Qinhuangdao 066004, People’s Republic of China
X.Y. Wang
Affiliation:
Key Laboratory of Metastable Materials Science & Technology, Yanshan University, Qinhuangdao 066004, People’s Republic of China; and Institute of Physics, Chinese Academy of Sciences, Beijing 100080, People’s Republic of China
Y.Z. Jia
Affiliation:
Institute of Physics, Chinese Academy of Sciences, Beijing 100080, People’s Republic of China; and School of Material Science and Technology, Harbin Institute of Technology, Harbin 150001, People’s Republic of China
M.Z. Ma
Affiliation:
Key Laboratory of Metastable Materials Science & Technology, Yanshan University, Qinhuangdao 066004, People’s Republic of China
L.L. Sun
Affiliation:
Institute of Physics, Chinese Academy of Sciences, Beijing 100080, People’s Republic of China
W.K. Wang
Affiliation:
Key Laboratory of Metastable Materials Science & Technology, Yanshan University, Qinhuangdao 066004, People’s Republic of China; and Institute of Physics, Chinese Academy of Sciences, Beijing 100080, People’s Republic of China
*
a) Address all correspondence to this author.e-mail: chaoyang666@hotmail.com
Get access

Abstract

Compositional and microstructural differences from bottom to top along a water-quenched Zr41Ti14Cu12.5Ni10Be22.5 alloy rod, 90 mm in length and 22 mm in diameter, were investigated experimentally by x-ray diffraction measurement, differential scanning calorimetry, and composition analysis. The results show that the upper part of the rod contains more beryllium atoms and is amorphous. The lower part with less beryllium atoms contains crystalline phases. The composition gradient is possibly due to the gravity-driven transport of Be-rich clusters and un-melted tiny solid pieces in the alloy melt.

Type
Articles
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Meyer, A., Petry, W., Koza, M. and Macht, M.P.: Fast diffusion in ZrTiCuNiBe melts. Appl. Phys. Lett. 83, 3894 (2003).CrossRefGoogle Scholar
2Meyer, A., Wuttke, J., Petry, W., Randl, O.G. and Schober, H.: Slow motion in a metallic liquid. Phys. Rev. Lett. 80, 4454 (1998).CrossRefGoogle Scholar
3Knorr, K., Macht, M.P., Freitag, H. and Mehrer, H.: Self-diffusion in the amorphous and supercooled liquid state of the bulk metallic glass Zr46.75Ti8.25Cu7.5Ni10Be27.5. J. Non-Cryst. Solids 250, 669 (1999).CrossRefGoogle Scholar
4Ehmler, H., Heesemann, A., Raetzke, K., Faupel, F. and Geyer, U.: Mass dependence of diffusion in a supercooled metallic melt. Phys. Rev. Lett. 80, 4919 (1998).CrossRefGoogle Scholar
5Rehmet, A., Raetzke, K., Faupel, F., Eversheim, P.D., Freitag, K., Geyer, U. and Schneider, S.: 7Be tracer diffusion in a deeply supercooled Zr46.7Ti8.3Cu7.5Ni10Be27.5 melt. Appl. Phys. Lett. 79, 2892 (2001).CrossRefGoogle Scholar
6Geyer, U., Schneider, S., Johnson, W.L., Qiu, Y., Tombrello, T.A. and Macht, M.P.: Atomic diffusion in the supercooled liquid and glassy states of the Zr41.2Ti13.8Cu12.5Ni10Be22.5 alloy. Phys. Rev. Lett. 75, 2364 (1995).CrossRefGoogle ScholarPubMed
7Geyer, U., Johnson, W.L., Schneider, S., Qiu, Y., Tombrello, T.A. and Macht, M.P.: Small atom diffusion and breakdown of the stokes-einstein relation in the supercooled liquid state of the Zr46.7Ti8.3Cu7.5Ni10Be27.5 alloy. Appl. Phys. Lett. 69, 2492 (1996).CrossRefGoogle Scholar
8Wang, X.Y., Sun, L.L., Li, G., Liu, R.P., Zhang, J. and Wang, W.K.: Impurity diffusion of Mo in Zr57Nb5Cu15.4Ni12.6Al10 bulk metallic glass. J. Mater. Sci. Lett. 22, 171 (2003).CrossRefGoogle Scholar
9Li, D.X. Structural model and analysis method of amorphous materials, in Amorphous Physics, edited by Guo, Y.C. and Wang, X.Z. (Science Press, Beijing, China, 1984), p 60.Google Scholar
10Bakai, A.S., Mikhailovskij, I.M., Mazilova, T.I. and Wanderka, N.: Field emission microscopy of the cluster and subcluster structure of a Zr–Ti–Cu–Ni–Be bulk metallic glass. Low. Temp. Phys. 28, 279 (2002).CrossRefGoogle Scholar
11Wang, W.H. and Bai, H.Y.: Role of small atoms in the formation and properties of Zr–Ti–Cu–Ni–Be bulk amorphous alloys. J. Appl. Phys. 84, 5961 (1998).CrossRefGoogle Scholar
12Waniuk, T.A., Schroers, J. and Johnson, W.L.: Critical cooling rate and thermal stability of Zr–Ti–Cu–Ni–Be alloys. Appl. Phys. Lett. 78, 1213 (2001).CrossRefGoogle Scholar
13Liu, R.P., Sun, L.L., Zhao, J.H., Zhang, X.Y., He, D.W., Qin, Z.C., Xu, Y.F. and Wang, W.K.: Evaluation of effective mass transport coefficients through comparison of solidification on the ground and on board a satellite. Appl. Phys. Lett. 71, 64 (1997).CrossRefGoogle Scholar
14Liu, R.P., Zhou, Z.H., Sun, L.L., Zhao, J.H., Zhang, X.Y., He, D.W., Qin, Z.C., Xu, Y.F. and Wang, W.K.: Effects of buoyancy convection on phase morphology during solidification of Pd40Ni40P20 Alloy. Mater. Sci. Eng. A 264, 167 (1999).CrossRefGoogle Scholar
15Mattern, N., Eckert, J., Kuehn, U., Hermann, H., Sakowski, J., Herms, G. and Neuefeind, J.: Structural behavior of Zr52Ti5Cu18Ni15Be10 bulk metallic glass at high temperature. Appl. Phys. Lett. 80, 4525 (2002).CrossRefGoogle Scholar
16Hufnagel, T.C. and Brennan, S.: Short- and medium-range order in (Zr70Cu20Ni10)90−xTaxAl10 bulk amorphous alloys. Phys. Rev. B 67, 014203 (2003).CrossRefGoogle Scholar
17Li, H., Wang, G.H., Bian, X.F. and Ding, F.: Local cluster formation in a cobalt melt during the cooling process. Phys. Rev. B 65, 035411 (2001).Google Scholar
18Kristiakova, K. and Svec, P.: Origin of cluster and void structure in melt-quenched Fe–Co–B metallic glasses determined by positron annihilation at low temperatures. Phys. Rev. B 64, 014204 (2001).CrossRefGoogle Scholar
19Kristiakova, K., Svec, P., Kristiak, J., Duhaj, P. and Sausa, O.: Short range ordering in the melt and its manifestation in glassy Fe–Co–B investigation by positron annihilation lifetime. Mater. Sci. Eng. A 226-228, 321 (1997).CrossRefGoogle Scholar
20Li, J.M.: Bulk nanostructure formation directly from the multicomponent alloy melt. Appl. Phys. Lett. 84, 347 (2004).CrossRefGoogle Scholar
21Macht, M.P., Wanderka, N., Wei, Q., Sieber, I. and Deyneka, N.: Tendency of primary crystal formation in ZrTiCuNiBe metallic bulk glasses. Mater. Sci. Eng. A 304–306, 701 (2001).CrossRefGoogle Scholar
22Miller, M.K.: Decomposition of bulk metallic glasses. Mater. Sci. Eng. A 250, 133 (1998).CrossRefGoogle Scholar
23Li, Q.Y., Dong, P., Liu, R.X. and Bai, Y.Q.: Preparation of monodisperse SiO2/TiO2/SiO2 multiply coated submicrospheres. J. Inorg. Mater. 16, 896 (2001).Google Scholar
24Masuhr, A., Busch, R. and Johnson, W.L.: Thermodynamics and kinetics of the Zr41.2Ti13.8Cu10.0Ni12.5Be22.5 bulk metallic glass forming liquid: Glass formation from a strong liquid. J. Non-Cryst. Solids 250-252, 566 (1999).CrossRefGoogle Scholar
25Hu, H.Q. Structure and properties of liquid metal, in Solidification of Metals, edited by Hu, H.Q. (Press of Metallurgy Industry, Beijing, China, 1985), p 17.Google Scholar
26Zhang, K.Q., Wang, Y., Wu, S.Y., Guan, Y. and Zhang, X.Y.: Transformation kinetics of bulk Zr41Ti14Cu12.5Ni10Be22.5 metallic glass. J. Iron Steel Res. 14-6, 65 (2002).Google Scholar
27Sun, L.L., Kikegawa, T., Wu, Q., Zhan, Z.J. and Wang, W.K.: Unusual transition phenomenon in Zr-based bulk metallic glass upon heating at high pressure. Appl. Phys. Lett. 80, 3087 (2002).CrossRefGoogle Scholar
28Hays, C.C., Kim, C.P. and Johnson, W.L.: Large supercooled liquid region and phase separation in the Zr–Ti–Ni–Cu–Be bulk metallic glasses. Appl. Phys. Lett. 75, 1089 (1999).CrossRefGoogle Scholar