Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-27T02:30:46.324Z Has data issue: false hasContentIssue false

Internal friction due to oxygen relaxation in superconducting YBa2Cu3O7−δ above Tc

Published online by Cambridge University Press:  31 January 2011

J.R. Cost
Affiliation:
Los Alamos National Laboratory, Los Alamos, New Mexico 87545
J.T. Stanley
Affiliation:
Arizona State University, Tempe, Arizona 85281
Get access

Abstract

YBa2Cu3O7−δ has an internal friction peak near 210 °C measured at 1.18 Hz. The shift in the temperature of this peak with frequency as measured with different internal friction techniques indicates that the relaxation process has an average activation energy of 1.14 ± 0.05 eV and a pre-exponential factor, τ0 = 1.5 × 10−13s (log τ0 = −12.82 ± 0.23). The peak height decreases during annealing at above 375 °C in helium and increases when annealed in oxygen. The mechanism for the relaxation is believed to be the stress-induced motion of oxygen atoms in the Cu–O plane. Detailed analysis shows that the internal friction peak is determined by a spectrum of activation energies; this spectrum is a symmetrical single peak 0.12 eV wide at half-height. Models for the relaxation are considered and the resulting diffusivities are compared to tracer diffusion results.

Type
Articles
Copyright
Copyright © Materials Research Society 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Berry, B. S., Bull. Am. Phys. Soc. 33 (3), 512 (1988).Google Scholar
2Tallon, J. L., Schuitema, A. H., and Tapp, N. E., Appl. Phys. Lett. 52, 507 (1988).CrossRefGoogle Scholar
3Tallon, J. L. and Staines, M. P., unpublished results.Google Scholar
4Zhang, J. X., Lin, G. M., Lin, Z. C., Liang, K. F., Fung, P. C. W., and Siu, G. G., J. Phys.: Condens. Matter 1, 6939 (1989).Google Scholar
5Zhang, J. X., Lin, G. M., Zeng, W. G., Liang, K. F., Lin, Z. C., Siu, G. G., Stokes, M. J., and Fung, P. C.W., Supercon. Sci. Technol. 3, 163 (1990).CrossRefGoogle Scholar
6Xie, X. M., Chen, T. G., and Wu, Z. L., Phys. Rev. B 40, 4549 (1989).CrossRefGoogle Scholar
7Zener, C., Elasticity and Anelasticity of Metals (Univ. of Chicago, Chicago, IL, 1948).Google Scholar
8Nowick, A. S. and Berry, B. S., Anelastic Relaxations in Crystalline Solids (Academic Press, New York, 1972), p. 588.Google Scholar
9Poeppel, R. B., Dorris, S. E., Youngdahl, C. A., Singh, J. P., Lanagan, M. T., Balachandran, U., Dusek, J. T., and Goretta, K. C., J. of Metals 41, 11 (1989).Google Scholar
10Lanagan, M. T., Poeppel, R. B., Singh, J. P., Santos, D. I. Dos, Lumpp, J. K., Balachandran, U., Dusek, J. T., and Goretta, K. C., J. Less-Common Metals 149, 305 (1989).CrossRefGoogle Scholar
11Ikuma, Y. and Akiyoshi, S., J. Appl. Phys. 64, 3915 (1988).CrossRefGoogle Scholar
12Cost, J. R., in Nontraditional Methods in Diffusion, edited by Murch, G. E. (TMS-AIME, Warrendale, PA, 1984), p. 111.Google Scholar
13Cost, J. R., J. Appl. Phys. 54, 2137 (1983).CrossRefGoogle Scholar
14Cost, J. R., Snead, C. L., Jr., and Bethin, J., de Physique, J., Colloque C10, Suppl. 12, 46, 111 (1985).Google Scholar
15Weller, M., Zhang, J. X., Li, G. Y., Ke, T. S., and Diehl, J., Acta Metall. 29, 1055 (1981).CrossRefGoogle Scholar
16Powers, R. W. and Doyle, M. V., J. Appl. Phys. 30, 514 (1959).CrossRefGoogle Scholar
17Beno, M. A., Soderholm, L., Capone, D. W., Hinks, D. G., Jorgensen, J. D., Grace, J. D., Schuller, I. K., Segre, C. U., and Zhang, K., Appl. Phys. Lett. 51, 57 (1987).CrossRefGoogle Scholar
18Hewat, A. W., Capponi, J. J., Chaillout, C., Marzio, M., and Hewat, E. A., Solid State Commun. 64, 301 (1987).CrossRefGoogle Scholar
19Jorgensen, J. D., Beno, M. A., Hinks, D. G., Soderholm, L., Volin, K. J., Hitterman, R. L., Grace, J. D., Schuller, I. K., Segre, C. U., Zhang, K., and Kleefisch, M. S., Phys. Rev. B 36, 3608 (1987).CrossRefGoogle Scholar
20Nowick, A. S., Adv. Phys. 16, 1 (1967).CrossRefGoogle Scholar
21Jorgensen, J. D., Pei, S., Lightfoot, P., Shi, H., Paulikas, A. P., and Veal, B. W., Physica C 167, 571 (1990).CrossRefGoogle Scholar
22Veal, B. W., You, H., Paulikas, A. P., Shi, H., Fang, Y., and Downey, J. W., Phys. Rev. B 42, 6305 (1990).CrossRefGoogle Scholar
23Cannelli, G., Cantelli, R., and Cordero, F., Phys. Rev. B 38, 7200 (1988).CrossRefGoogle Scholar
24Zhang, J., Yang, M., and Chen, T., Mater. Lett. 6, 379 (1988).CrossRefGoogle Scholar
25Bakker, H., J. Westerveld, P.A., and Welch, D. O., Physica 147B, 161 (1987).Google Scholar
26Routbort, J. L., Rothman, S. J., Flandermeyer, B. K., Nowicki, L. J., and Baker, J. E., Defects and Diffusion Forum 59, 213 (1988).Google Scholar
27Rothman, S. R., Routbort, J. L., and Baker, J. E., Phys. Rev. B 40, 8852 (1989).CrossRefGoogle Scholar
28Bakker, H., Westerveld, J. P.A., Cascio, D.M.R. Lo, and Welch, D. O., Physica C 157, 25 (1989).CrossRefGoogle Scholar