Hostname: page-component-78c5997874-dh8gc Total loading time: 0 Render date: 2024-11-19T13:00:50.102Z Has data issue: false hasContentIssue false

Kinetic effect of boron on the crystallization of Si3N4 in Si–B–C–N polymer-derived ceramics

Published online by Cambridge University Press:  01 January 2011

Amir H. Tavakoli*
Affiliation:
Institute for Materials Science, University of Stuttgart and Max Planck Institute for Metals Research, D-70569 Stuttgart, Germany
Peter Gerstel
Affiliation:
Institute for Materials Science, University of Stuttgart and Max Planck Institute for Metals Research, D-70569 Stuttgart, Germany
Jerzy A. Golczewski
Affiliation:
Institute for Materials Science, University of Stuttgart and Max Planck Institute for Metals Research, D-70569 Stuttgart, Germany
Joachim Bill
Affiliation:
Institute for Materials Science, University of Stuttgart and Max Planck Institute for Metals Research, D-70569 Stuttgart, Germany
*
Address all correspondence to this author. e-mail: atavakoli@ucdavis.edu
Get access

Abstract

The amorphous Si–B–C–N ceramics with a similar Si/C/N atomic ratio and various boron contents of 3.7 and 6.0 at.% B were synthesized and then isothermally annealed at temperatures ranging from 1550 to 1775 °C. The course of crystallization for the modifications of Si3N4 was examined by quantitative analysis of the corresponding x-ray diffraction patterns. Additionally, recent results of similar investigations on the ceramic with 8.3 at.% B were also considered. The kinetic analysis demonstrates that the controlling mechanisms of the Si3N4 crystallization, continuous nucleation and diffusion-controlled growth, are independent of the boron content. Nevertheless, the estimated activation energy of the crystallization significantly increases from 7.8 to 11.5 eV with the amount of boron ranging from 3.7 to 8.3 at.%. It is concluded that the role of boron in the crystallization kinetics is mainly due to the effect of boron on the nucleation process. Beside the kinetic analysis, the correlation between the boron content and the Si3N4 crystallite size has been discussed.

Type
Articles
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

a)

Present address: Peter A. Rock Thermochemistry Laboratory and NEAT ORU, University of California at Davis, Davis, California 95616.

b)

Present address: Institute für Technische Chemie und Polymerchemie, Karlsruhe Institute of Technology, Engesserstr. 15, 76131 Karlsruhe, Germany.

References

REFERENCES

1.Su, K., Remsen, E.E., Zank, G.A., and Sneddon, L.G.: Synthesis, characterization, and ceramic conversion reactions of borazine-modified hydridopolysilazanes—New polymeric precursors to SiNCB ceramic composites. Chem. Mater. 5, 547 (1993).CrossRefGoogle Scholar
2.Baldus, H.P., Jansen, M., and Wagner, O.: New materials in the system Si–(N, C)–B and their characterization. Key Eng. Mater. 89-91, 75 (1994).Google Scholar
3.Bill, J. and Aldinger, F.: Precursor-derived covalent ceramics. Adv. Mater. 7, 775 (1995).CrossRefGoogle Scholar
4.Riedel, R., Kienzle, A., Dressler, W., Ruwisch, L., Bill, J., and Aldinger, F.: A silicoboron carbonitride ceramic stable to 2000 °C. Nature 382, 796 (1996).CrossRefGoogle Scholar
5.Schuhmacher, J., Berger, F., Weinmann, M., Bill, J., Aldinger, F., and Müller, K.: Solid-state NMR and FTIR studies of the preparation of Si–B–C–N ceramics from boron-modified polysilazanes. Appl. Organomet. Chem. 15, 809 (2001).CrossRefGoogle Scholar
6.Zern, A., Mayer, J., Janakiraman, N., Weinmann, M., Bill, J., and Rühle, M.: Quantitative EFTEM study of precursor-derived Si–B–C–N ceramics. J. Eur. Ceram. Soc. 22, 1621 (2002).CrossRefGoogle Scholar
7.Janakiraman, N., Weinmann, M., Schuhmacher, J., Müller, K., Bill, J., and Aldinger, F.: Thermal stability, phase evolution, and crystallization in Si–B–C–N ceramics derived from a polyborosilazane precursor. J. Am. Ceram. Soc. 85, 1807 (2002).CrossRefGoogle Scholar
8.Schiavon, M.A., Soraru, G.D., and Yoshida, I.V.P.: Poly(borosilazanes) as precursors of Si–B–C–N glasses: Synthesis and high temperature properties. J. Non-Cryst. Solids 348, 156 (2004).CrossRefGoogle Scholar
9.Bernard, S., Weinmann, M., Gerstel, P., Miele, P., and Aldinger, F.: Boron-modified polysilazane as a novel single-source precursor for SiBCN ceramic fibers: Synthesis, melt spinning, curing and ceramic conversion. J. Mater. Chem. 15, 289 (2005).CrossRefGoogle Scholar
10.Seifert, H.J., Peng, J., Golczewski, J., and Aldinger, F.: Phase equilibria of precursor-derived Si–(B–)C–N ceramics. Appl. Organomet. Chem. 15, 794 (2001).CrossRefGoogle Scholar
11.Haug, J., Lamparter, P., Weinmann, M., and Aldinger, F.: Diffraction study on the atomic structure and phase separation of amorphous ceramics in the Si–(B–)C–N system. 2. Si–B–C–N ceramics. Chem. Mater. 16, 83 (2004).CrossRefGoogle Scholar
12.Berger, F., Müller, A., Aldinger, F., and Müller, K.: Solid-state NMR investigations on Si–B–C–N ceramics derived from boron-modified poly(allylmethylsilazane). Z. Anorg. Allg. Chem. 631, 355 (2005).CrossRefGoogle Scholar
13.Müller, A., Zern, A., Gerstel, P., Bill, J., and Aldinger, F.: Boron-modified poly(propenylsilazane)-derived Si–B–C–N ceramics preparation and high temperature properties. J. Eur. Ceram. Soc. 22, 1631 (2002).CrossRefGoogle Scholar
14.Müller, A., Gerstel, P., Weinmann, M., Bill, J., and Aldinger, F.: Correlation of boron content and high temperature stability in Si–B–C–N ceramics. J. Eur. Ceram. Soc. 20, 2655 (2000).CrossRefGoogle Scholar
15.Müller, A., Gerstel, P., Weinmann, M., Bill, J., and Aldinger, F.: Correlation of boron content and high temperature stability in Si–B–C–N ceramics II. J. Eur. Ceram. Soc. 21, 2171 (2001).CrossRefGoogle Scholar
16.Golczewski, J.A. and Aldinger, F.: Thermodynamic modeling of amorphous Si–C–N ceramics derived from polymer precursors. J. Non-Cryst. Solids 347, 204 (2004).CrossRefGoogle Scholar
17.Tavakoli, A.H., Gerstel, P., Golczewski, J.A., and Bill, J.: Effect of boron on the crystallization of amorphous Si–(B–)C–N polymer-derived ceramics. J. Non-Cryst. Solids 355, 2381 (2009).CrossRefGoogle Scholar
18.Golczewski, J.A.: Thermodynamic analysis of structural transformation induced by annealing of amorphous Si–C–N ceramics derived from polymer precursors. Int. J. Mater. Res. 97, 729 (2006).Google Scholar
19.Golczewski, J.A.: Thermodynamic analysis of isothermal crystallization of amorphous Si–C–N ceramics derived from polymer precursors. J. Ceram. Soc. Jpn. 114, 950 (2006).CrossRefGoogle Scholar
20.Tavakoli, A.H., Gerstel, P., Golczewski, J.A., and Bill, J.: Quantitative x-ray diffraction analysis and modeling of the crystallization process in amorphous Si–B–C–N polymer-derived ceramics. J. Am. Ceram. Soc. 93, 1470 (2010).CrossRefGoogle Scholar
21.Tavakoli, A.H., Gerstel, P., Golczewski, J.A., and Bill, J.: Crystallization kinetics of Si3N4 in Si–B–C–N polymer-derived ceramics. J. Mater. Res. 25(11), 2150 (2010).CrossRefGoogle Scholar
22.Sonneveld, E.J. and Delhez, R.: ProFit, version 1.0 (Philips Electronics N.V., The Netherlands, 1996).Google Scholar
23.Scherrer, P.: Estimation of the size and structure of colloidal particles by röntgen rays. Göttinger. Nachr. Math. Phys. 2, 98 (1918).Google Scholar
24.Delhez, R., de Keiser, Th.H., and Mittemeijer, E.J.: Determination of crystallite size and lattice distortions through x-ray diffraction line profile analysis. Fresenius J. Anal. Chem. 312, 1 (1982).CrossRefGoogle Scholar
25.Avrami, M.: Kinetics of phase change. I: General theory. J. Chem. Phys. 7, 1103 (1939).CrossRefGoogle Scholar
26.Avrami, M.: Kinetics of phase change. II: Transformation–time relations for random distribution of nuclei. J. Chem. Phys. 8, 212 (1940).CrossRefGoogle Scholar
27.Avrami, M.: Kinetics of phase change. III: Granulation, phase change and microstructure. J. Chem. Phys. 9, 177 (1941).CrossRefGoogle Scholar
28.Johnson, W.A. and Mehl, R.F.: Reaction kinetics in processes of nucleation and growth. Trans. AIME 135, 416 (1939).Google Scholar
29.Kolmogorov, A.N.: On statistical theory of metal crystallization. Izv. Akad. Nauk SSSR Ser. Mat. 3, 355 (1937).Google Scholar
30.Christian, J.W.: The Theory of Transformations in Metals and Alloys, 3rd ed. (Pergamon, Oxford, UK, 2002), p. 546.Google Scholar
31.Kempen, A.T.W., Sommer, F., and Mittemeijer, E.J.: Determination and interpretation of isothermal and non-isothermal transformation kinetics: The effective activation energies in terms of nucleation and growth. J. Mater. Sci. 37, 1321 (2002).CrossRefGoogle Scholar
32.Schmidt, H., Borchardt, G., Weber, S., Scherrer, S., Baurmann, H., Müller, A., and Bill, J.: Self-diffusion studies of 15N in amorphous Si3BC4.3N2 ceramics with ion implantation and secondary ion mass spectrometry. J. Appl. Phys. 88, 1827 (2000).CrossRefGoogle Scholar
33.Schmidt, H., Borchardt, G., Baurmann, H., Weber, S., Scherrer, S., Müller, A., and Bill, J.: Tracer self-diffusion studies in amorphous Si–(B)–C–N ceramics using ion implantation and SIMS. Def. Diff. Forum 194199, 941 (2001).CrossRefGoogle Scholar
34.Schmidt, H.: Fundamentals of self-diffusion in amorphous Si–(B–)C–N. Diff. Fundamentals 2, 59.1 (2005).Google Scholar
35.Schmidt, H., Borchardt, G., Kaïtasov, O., and Lesage, B.: Atomic diffusion of boron and other constituents in amorphous Si–B–C–N. J. Non-Cryst. Solids 353, 4801 (2007).CrossRefGoogle Scholar
36.Schmidt, H., Borchardt, G., Weber, S., Scherrer, H., Baumann, H., Müller, A., and Bill, J.: Comparison of 30Si diffusion in amorphous Si–C–N and Si–B–C–N precursor-derived ceramics. J. Non-Cryst. Solids 298, 232 (2002).CrossRefGoogle Scholar
37.Golczewski, J.A. and Aldinger, F.: Phase separation in Si–(B)–C–N polymer-derived ceramics. Int. J. Mater. Res. 97, 114 (2006).CrossRefGoogle Scholar
38.Fine, M.E.: Introduction to Phase Transformations in Condensed Systems (Macmillan, New York, 1964), p. 12.Google Scholar