Hostname: page-component-586b7cd67f-dsjbd Total loading time: 0 Render date: 2024-11-21T09:03:15.871Z Has data issue: false hasContentIssue false

Large area chemical vapor deposition growth of monolayer MoSe2 and its controlled sulfurization to MoS2

Published online by Cambridge University Press:  28 January 2016

Rudresh Ghosh*
Affiliation:
Microelectronics Research Center, The University of Texas at Austin, Austin, Texas 78758, USA
Joon-Seok Kim
Affiliation:
Microelectronics Research Center, The University of Texas at Austin, Austin, Texas 78758, USA
Anupam Roy
Affiliation:
Microelectronics Research Center, The University of Texas at Austin, Austin, Texas 78758, USA
Harry Chou
Affiliation:
Microelectronics Research Center, The University of Texas at Austin, Austin, Texas 78758, USA
Mary Vu
Affiliation:
Microelectronics Research Center, The University of Texas at Austin, Austin, Texas 78758, USA
Sanjay K. Banerjee
Affiliation:
Microelectronics Research Center, The University of Texas at Austin, Austin, Texas 78758, USA
Deji Akinwande
Affiliation:
Microelectronics Research Center, The University of Texas at Austin, Austin, Texas 78758, USA
*
a) Address all correspondence to this author. e-mail: rudresh@utexas.edu
Get access

Abstract

Layered transition metal dichalcogenides which are part of the two dimensional materials family are experiencing rapidly growing interest owing to their diverse physical and optoelectronic properties. Large area controllable synthesis of these materials is required for transition from lab scale research to practical applications. In this work, we present a single step chemical vapor deposition process for large area monolayer growth of molybdenum selenide (MoSe2). We also demonstrate controllable thermal conversion from molybdenum selenide to molybdenum sulfide.

Type
Invited Articles
Copyright
Copyright © Materials Research Society 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Novoselov, K.S., Geim, A.K., Morozov, S.V., Jiang, D., Zhang, Y., Dubonos, S.V., Grigorieva, I.V., and Firsov, A.A.: Electric field effect in atomically thin carbon films. Science 306, 666669 (2004).CrossRefGoogle ScholarPubMed
Chhowalla, M., Shin, H.S., Eda, G., Li, L-J., Loh, K.P., and Zhang, H.: The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. Nat. Chem. 5, 263275 (2013).CrossRefGoogle ScholarPubMed
Wang, Q.H., Kalantar-zadeh, K., Kis, A., Coleman, J.N., and Strano, M.S.: Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat. Nanotechnol. 7, 699712 (2012).CrossRefGoogle ScholarPubMed
Radisavljevic, B., Radenovic, A., Brivio, J., Giacometti, V., and Kis, A.: Single-layer MoS2 transistors. Nat. Nanotechnol. 6, 147150 (2011).CrossRefGoogle ScholarPubMed
Das, S., Chen, H.Y., Penumatcha, A.V., and Appenzeller, J.: High performance multilayer MoS2 transistors with scandium contacts. Nano Lett. 13, 100105 (2013).CrossRefGoogle ScholarPubMed
Akinwande, D., Petrone, N., and Hone, J.: Two-dimensional flexible nanoelectronics. Nat. Commun. 5, 5737 (2015).Google Scholar
Chuang, S., Battaglia, C., Azcatl, A., McDonnell, S., Kang, J.S., Yin, X., Tosun, M., Kapadia, R., Fang, H., Wallace, R.M., and Javey, A.: MoS2 p-type transistors and diodes enabled by high work function MoOx contacts. Nano Lett. 14, 13371342 (2014).CrossRefGoogle ScholarPubMed
Kiriya, D., Tosun, M., Zhao, P., Kang, J.S., and Javey, A.: Air-stable surface charge transfer doping of MoS2 by benzyl viologen. J. Am. Chem. Soc. 136, 78537856 (2014).CrossRefGoogle ScholarPubMed
Chang, H., Yang, S., Lee, J., Tao, L., Hwang, W., Jena, D., Lu, N., and Akinwande, D.: High-performance, highly bendable MoS2 transistors with high-K dielectrics for flexible low-power. ACS Nano 7, 54465452 (2013).CrossRefGoogle ScholarPubMed
Sanne, A., Ghosh, R., Rai, A., Movva, H.C.P., Sharma, A., Rao, R., Mathew, L., and Banerjee, S.K.: Top-gated chemical vapor deposited MoS2 field-effect transistors on Si3N4 substrates. Appl. Phys. Lett. 106, 062101 (2015).CrossRefGoogle Scholar
Sanne, A., Ghosh, R., Rai, A., Nagavalli Yogeesh, M., Shin, S.H., Sharma, A., Jarvis, K., Mathew, L., Rao, R., Akinwande, D., and Banerjee, S.K.: Radio frequency transistors and circuits based on CVD MoS2 . Nano Lett. 15, 50395045 (2015).CrossRefGoogle ScholarPubMed
Liu, Y., Ghosh, R., Wu, D., Ismach, A., Ruoff, R., and Lai, K.: Mesoscale imperfections in MoS2 atomic layers grown by a vapor transport technique. Nano Lett. 14, 46824686 (2014).CrossRefGoogle ScholarPubMed
Roy, A., Guchhait, S., Sonde, S., Dey, R., Pramanik, T., Rai, A., Hema, C.P., Colombo, L., and Banerjee, S.K.: Two-dimensional weak anti-localization in Bi2Te3 thin film grown on Si(111)-(7 × 7) surface by molecular beam epitaxy. Appl. Phys. Lett. 102, 163118 (2013).CrossRefGoogle Scholar
Li, H., Zhang, Q., Yap, C.C.R., Tay, B.K., Edwin, T.H.T., Olivier, A., and Baillargeat, D.: From bulk to monolayer MoS2: Evolution of Raman scattering. Adv. Funct. Mater. 22, 13851390 (2012).CrossRefGoogle Scholar
Tongay, S., Zhou, J., Ataca, C., Lo, K., Matthews, T.S., Li, J., Grossman, J.C., and Wu, J.: Thermally driven crossover from indirect toward direct bandgap in 2D semiconductors: MoSe2 versus MoS2 . Nano Lett. 12, 55765580 (2012).CrossRefGoogle ScholarPubMed
Mak, K.F., He, K., Lee, C., Lee, G.H., Hone, J., Heinz, T.F., and Shan, J.: Tightly bound trions in monolayer MoS2 . Nat. Mater. 12, 207211 (2012).CrossRefGoogle ScholarPubMed
Su, S-H., Hsu, W-T., Hsu, C-L., Chen, C-H., Chiu, M-H., Lin, Y-C., Chang, W-H., Suenaga, K., He, J-H., and Li, L-J.: Controllable synthesis of band-gap-tunable and monolayer transition-metal dichalcogenide alloys. Front. Energy Res. 2, 27 (2014).CrossRefGoogle Scholar