Article contents
Local structure of the Zr–Al metallic glasses studied by proposed n-body potential through molecular dynamics simulation
Published online by Cambridge University Press: 31 January 2011
Abstract
An n-body potential is first constructed for the Zr–Al system and proven to be realistic by reproducing a number of important properties of the system. Applying the constructed potential, molecular dynamics simulations, chemical short-range order (CSRO) calculation, and Honeycutt and Anderson (HA) pair analysis are carried out to study the Zr–Al metallic glasses. It is found that for the binary Zr–Al system, metallic glasses are energetically favored to be formed within composition range of 35–75 at.% Al. The calculation shows that the CSRO parameter is negative and could be up to −0.17, remarkably indicating that there exists a chemical short-range order in the Zr–Al metallic glasses. The HA pair analysis also reveals that there are diverse short-range packing units in the Zr–Al metallic glasses, in which icosahedra and icosahedra/face-centered cubic (fcc)-defect structures are predominant.
Keywords
- Type
- Articles
- Information
- Copyright
- Copyright © Materials Research Society 2010
References
REFERENCES
- 9
- Cited by